留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的锂离子电池健康状态分类与预测

高昊天 陈云霞

高昊天,陈云霞. 基于机器学习的锂离子电池健康状态分类与预测[J]. 北京航空航天大学学报,2023,49(12):3467-3475 doi: 10.13700/j.bh.1001-5965.2022.0154
引用本文: 高昊天,陈云霞. 基于机器学习的锂离子电池健康状态分类与预测[J]. 北京航空航天大学学报,2023,49(12):3467-3475 doi: 10.13700/j.bh.1001-5965.2022.0154
GAO H T,CHEN Y X. A machine learning based method for lithium-ion battery state of health classification and prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3467-3475 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0154
Citation: GAO H T,CHEN Y X. A machine learning based method for lithium-ion battery state of health classification and prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3467-3475 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0154

基于机器学习的锂离子电池健康状态分类与预测

doi: 10.13700/j.bh.1001-5965.2022.0154
基金项目: 国家自然科学基金(52075019)
详细信息
    通讯作者:

    E-mail:chenyunxia@buaa.edu.cn

  • 中图分类号: TP391

A machine learning based method for lithium-ion battery state of health classification and prediction

Funds: National Natural Science Foundation of China (52075019)
More Information
  • 摘要:

    对锂离子电池进行准确的健康状态(SOH)预测是电池应用中的一项关键技术。由于锂离子电池内部复杂的电化学反应体系,多样的失效机理及生产差异,锂离子电池的退化往往呈现出较大的分散性,为锂离子电池SOH的准确预测造成了较大的困难。为此,提出一种基于机器学习的锂离子电池SOH分类与预测方法,基于精度约束,利用双子群优化算法确定训练集数据合适的类别个数及类别范围;基于Softmax分类模型根据锂离子电池早期退化数据进行SOH分类,使得退化趋势较为接近的电池被分为一类;对每一类电池分别利用神经网络构建其SOH预测模型,从而减小锂离子电池数据的大分散性的影响,提升锂离子电池的SOH预测精度。所提方法相比传统方法预测误差降低了34%以上,验证了所提方法的有效性和优越性。

     

  • 图 1  Softmax分类模型的网络结构

    Figure 1.  Network structure of Softmax classification model

    图 2  本文方法的技术路线

    Figure 2.  Technology Roadmap of proposed method

    图 3  某批锂离子电池前1000循环容量退化曲线

    Figure 3.  Capacity degradation curves of a batch of lithium-ion batteries in the first 1000 cycles

    图 4  训练集各类电池容量退化曲线

    Figure 4.  Capacity degradation curve for each type of battery in the training dataset

    图 5  测试集各类电池容量退化曲线

    Figure 5.  Capacity degradation curve for each type of battery in the test dataset

    图 6  各类电池训练集与测试集情况

    Figure 6.  The training dataset and test dataset for each type of battery

    图 7  测试集4类电池容量预测结果

    Figure 7.  Prediction results for four types of batteries capacity in test dataset

    图 8  本文方法与传统方法MPE分布情况

    Figure 8.  The MPE distribution between proposed method and traditional method

    图 9  传统方法对测试集电池的预测结果

    Figure 9.  Prediction results for test set batteries using traditional method

    图 10  大分散性数据集拟合算例

    Figure 10.  An example of fitting a large distributed dataset

    表  1  本文方法与传统方法预测误差对比

    Table  1.   Comparison of prediction errors between proposed method and traditional method

    方法MPE/%MPEE/%RMSE
    本文方法0.962.7417.45
    传统方法2.334.1941.15
    下载: 导出CSV
  • [1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. doi: 10.1126/science.1212741
    [2] NYKVIST B, NILSSON M. Rapidly falling costs of battery packs for electric vehicles[J]. Nature Climate Change, 2015, 5(4): 329-332. doi: 10.1038/nclimate2564
    [3] RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73-76. doi: 10.1038/nature17439
    [4] GAO L J, LIU S Y, DOUGAL R A. Dynamic lithium-ion battery model for system simulation[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3): 495-505. doi: 10.1109/TCAPT.2002.803653
    [5] NISHI Y. Lithium-ion secondary batteries: Past 10 years and the future[J]. Journal of Power Sources, 2001, 100(1-2): 101-106. doi: 10.1016/S0378-7753(01)00887-4
    [6] BURNS J C, KASSAM A, SINHA N N, et al. Predicting and extending the lifetime of Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(9): A1451-A1456. doi: 10.1149/2.060309jes
    [7] BAUMHÖFER T, BRÜHL M, ROTHGANG S, et al. Production caused variation in capacity aging trend and correlation to initial cell performance[J]. Journal of Power Sources, 2014, 247: 332-338. doi: 10.1016/j.jpowsour.2013.08.108
    [8] DAI H D, ZHAO G C, LIN M Q, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716. doi: 10.1109/TIE.2018.2880703
    [9] BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. doi: 10.1016/j.jpowsour.2013.05.040
    [10] LYU C, LAI Q Z, GE T F, et al. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework[J]. Energy, 2017, 120: 975-984. doi: 10.1016/j.energy.2016.12.004
    [11] PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017, 360: 301-318. doi: 10.1016/j.jpowsour.2017.03.042
    [12] DONG G Z, CHEN Z H, WEI J W, et al. Battery health prognosis using Brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8646-8655. doi: 10.1109/TIE.2018.2813964
    [13] HU C, JAIN G, TAMIRISA P, et al. Method for estimating capacity and predicting remaining useful life of lithium-ion battery[J]. Applied Energy, 2014, 126: 182-189. doi: 10.1016/j.apenergy.2014.03.086
    [14] BATZEL T D, SWANSON D C. Prognostic health management of aircraft power generators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 473-482. doi: 10.1109/TAES.2009.5089535
    [15] SEPASI S, GHORBANI R, LIAW B Y. Inline state of health estimation of lithium-ion batteries using state of charge calculation[J]. Journal of Power Sources, 2015, 299: 246-254. doi: 10.1016/j.jpowsour.2015.08.091
    [16] XU F, YANG F F, FEI Z C, et al. Life prediction of lithium-ion batteries based on stacked denoising autoencoders[J]. Reliability Engineering & System Safety, 2021, 208: 107396.
    [17] WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643. doi: 10.1109/TIE.2017.2782224
    [18] HU J N, HU J J, LIN H B, et al. State-of-charge estimation for battery management system using optimized support vector machine for regression[J]. Journal of Power Sources, 2014, 269: 682-693. doi: 10.1016/j.jpowsour.2014.07.016
    [19] WANG D, MIAO Q, PECHT M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J]. Journal of Power Sources, 2013, 239: 253-264. doi: 10.1016/j.jpowsour.2013.03.129
    [20] YOU G W, PARK S, OH D. Diagnosis of electric vehicle batteries using recurrent neural networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4885-4893. doi: 10.1109/TIE.2017.2674593
    [21] ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. doi: 10.1109/TVT.2018.2805189
    [22] HU X S, JIANG J C, CAO D P, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2015, 63(4): 2645-2656.
    [23] ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with BOX–COX transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585-1597. doi: 10.1109/TIE.2018.2808918
    [24] WAAG W, FLEISCHER C, SAUER D U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258: 321-339. doi: 10.1016/j.jpowsour.2014.02.064
    [25] LIU Z B, SUN G Y, BU S H, et al. Particle learning framework for estimating the remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2): 280-293. doi: 10.1109/TIM.2016.2622838
    [26] 李栋. 智慧水务应用架构设计与关键技术研究[D]. 西安: 西北工业大学, 2019: 106-111.

    LI D. Smart water application architecture design and key technology research[D]. Xi’an: Northwestern Polytechnical University, 2019: 106-11(in Chinese).
    [27] MORRIS G M, GOODSELL D S, HALLIDAY R S, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. Journal of Computational Chemistry, 1998, 19(14): 1639-1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
    [28] PAN W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26: 69-74. doi: 10.1016/j.knosys.2011.07.001
    [29] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3): 303-315. doi: 10.1016/j.cad.2010.12.015
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1737
  • HTML全文浏览量:  34
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 录用日期:  2022-05-01
  • 网络出版日期:  2022-06-01
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答