留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚拟协商与滚动时域优化的分布式协同制导策略

杨秀霞 姜子劼 张毅 王聪 于浩

杨秀霞,姜子劼,张毅,等. 基于虚拟协商与滚动时域优化的分布式协同制导策略[J]. 北京航空航天大学学报,2024,50(1):61-76 doi: 10.13700/j.bh.1001-5965.2022.0174
引用本文: 杨秀霞,姜子劼,张毅,等. 基于虚拟协商与滚动时域优化的分布式协同制导策略[J]. 北京航空航天大学学报,2024,50(1):61-76 doi: 10.13700/j.bh.1001-5965.2022.0174
YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0174
Citation: YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0174

基于虚拟协商与滚动时域优化的分布式协同制导策略

doi: 10.13700/j.bh.1001-5965.2022.0174
基金项目: 山东省自然科学基金(ZR2020MF090)
详细信息
    通讯作者:

    E-mail:yangxiuxia@126.com

  • 中图分类号: TJ765.3

Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization

Funds: Shadong Provincial Natural Science Foundation (ZR2020MF090)
More Information
  • 摘要:

    针对目标机动条件下的多无人机协同制导问题,提出基于虚拟协商机制与滚动时域优化的分布式协同制导策略。为同时改善时间协调与导引控制效果,在滚动时域优化框架下设计局部协调变量与目标函数,构建有限时域内的多约束协同制导优化模型;为增强制导系统对机动目标的鲁棒性,设计基于非线性自回归神经网络的干扰观测器;针对无人机之间的控制输入耦合,提出虚拟协商机制,提出虚拟协商机制,实现同步决策、排除内部“分歧”,并利用Nesterov动量的均方根传播算法设计制导指令生成策略;分别进行数字仿真与半实物仿真实验。结果表明:所提策略可在线预测与优化,应对各类干扰,提升协同制导效果,并会在实际任务中得到进一步的应用与检验。

     

  • 图 1  无人机i和目标的三维运动示意图

    Figure 1.  Three-dimensional motion diagram of ${\text{UA}}{{\text{V}}i}$ and target

    图 2  基于RHC与VN的分布式协同制导流程

    Figure 2.  Flow of distributed cooperative guidance based on RHC and VN

    图 3  各无人机通信拓扑结构及初始状态示意图

    Figure 3.  Schematic diagram of communication topology and initial state of each UAV

    图 4  无人机-目标三维运动轨迹

    Figure 4.  Three-dimensional motion trajectory of UAVs and target

    图 5  无人机-目标相对距离变化情况

    Figure 5.  Variation of UAV-target relative distance

    图 6  剩余攻击时间与平均剩余攻击时间之差变化情况

    Figure 6.  Variation of difference between time to go and average time to go

    图 7  VN-RHC协同制导策略下无人机制导指令变化情况

    Figure 7.  Variation of UAV guidance command under VN-RHC cooperative guidance strategy

    图 8  各时刻NARnet训练次数

    Figure 8.  NARnet training times at each sampling time

    图 9  各时刻无人机协商次数

    Figure 9.  UAV negotiation times at each sampling time

    图 10  各时刻NARnet预测误差

    Figure 10.  NARnet prediction error at each sampling time

    图 11  RflySim闭环仿真构架

    Figure 11.  RflySim closed loop simulation framework

    图 12  半实物仿真系统组成

    Figure 12.  Components of hardware in loop simulation system

    图 13  无人机-目标初始状态及无人机通信拓扑结构

    Figure 13.  Initial state of UAVs and target and communication topology of UAVs

    图 14  半实物仿真实验无人机、目标三维运动轨迹

    Figure 14.  Three-dimensional motion trajectory of UAVs and target in hardware in loop simulation

    图 15  半实物仿真结果

    Figure 15.  Results of hardware in loop simulation

    表  1  目标初始状态

    Table  1.   Target initial state

    x/m y/m z/m 航迹倾斜角/rad 航迹偏转角/rad 空速/(m·s−1)
    1500 800 1500 0 3π/4 20
    下载: 导出CSV

    表  2  无人机及目标性能参数

    Table  2.   Performance parameters of UAVs and target

    无人机/
    目标
    最大航迹
    倾斜角速度/
    (rad·s−1)
    最大航迹
    偏转角速度/
    (rad·s−1)
    最大加速度/
    (m·s−2)
    最大空速/
    (m·s−1)
    最小空速/
    (m·s−1)
    无人机1 0.05 0.05 1 30 20
    无人机2 0.05 0.05 1 30 20
    无人机3 0.05 0.05 1 30 20
    无人机4 0.05 0.05 1 30 20
    目标 0.05 0.05
    下载: 导出CSV

    表  3  2种协同制导策略的制导效果

    Table  3.   Guidance performance of two cooperative guidance strategies

    制导策略 总脱靶量/m 总攻击时间误差/s
    纵向随机常值机动、
    侧向随机正弦机动
    纵向随机方波机动、
    侧向随机常值机动
    纵向随机正弦机动、
    侧向随机方波机动
    纵向随机常值机动、
    侧向随机正弦机动
    纵向随机方波机动、
    侧向随机常值机动
    纵向随机正弦机动、
    侧向随机方波机动
    VN-RHC 0.0063 0.0024 0.1439 3.936×10−5 1.127×10−5 6.593×10−4
    APN-CC 0.0513 0.0447 0.9027 0.001 0.001 0.01
    下载: 导出CSV

    表  4  不同算法参数下的仿真结果

    Table  4.   Simulation results under different algorithm parameters

    仿真
    次序
    NARnet最大单步
    训练次数
    无人机最大单步
    协商次数
    平均
    脱靶量/m
    平均攻击
    时间误差/s
    平均单步
    训练次数
    平均单步
    协商次数
    无人机平均
    单步决策用时/s
    计算总时长/s
    1 100 100 0.0143 6.193×10−5 19 28 0.0178 112
    2 100 50 0.0133 6.386×10−5 19 21 0.0151 95.0469
    3 100 20 0.0220 2.432×10−4 19 13 0.0125 79.2656
    4 50 100 0.0151 7.838×10−5 18 28 0.0181 114.0781
    5 50 50 0.0127 5.917×10−5 18 20 0.0149 93.8594
    6 50 20 0.0193 1.750×10−4 18 13 0.0121 76.4375
    下载: 导出CSV
  • [1] 陈清阳, 辛宏博, 王玉杰, 等. 一种多机协同打击的快速航迹规划方法[J]. 北京航空航天大学学报, 2022, 48(7): 1145-1153. doi: 10.13700/j.bh.1001-5965.2021.0022

    CHEN Q Y, XIN H B, WANG Y J, et al. A rapid path planning method for multiple UAVs to cooperative strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1145-1153(in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0022
    [2] 王晓光, 章卫国, 刘洋. 伴飞诱饵干扰下的自杀式无人机攻击策略[J]. 航空学报, 2015, 36(9): 3137-3146.

    WANG X G, ZHANG W G, LIU Y. Suicide drones’ attack strategy on the condition of escort free-flight decoys influence[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3137-3146(in Chinese).
    [3] 吴捷, 胡盛华, 乔莎莎, 等. “忠诚僚机”式有人/无人机协同作战概念与任务管理技术研究[J]. 航空电子技术, 2021, 52(2): 27-31.

    WU J, HU S H, QIAO S S, et al. Research on combat concept and mission management technique of “loyal wingman” manned/unmanned aerial vehicle collaborative[J]. Avionics Technology, 2021, 52(2): 27-31(in Chinese).
    [4] 田磊, 赵启伦, 董希旺, 等. 拒止环境下基于“忠诚僚机”的护航策略[J]. 北京航空航天大学学报, 2021, 47(5): 1058-1067. doi: 10.13700/j.bh.1001-5965.2020.0090

    TIAN L, ZHAO Q L, DONG X W, et al. Escort strategy based on loyal wingman in denial environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1058-1067(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0090
    [5] ZHAO J, ZHOU R. Unified approach to cooperative guidance laws against stationary and maneuvering targets[J]. Nonlinear Dynamics, 2015, 81(4): 1635-1647. doi: 10.1007/s11071-015-2096-z
    [6] 彭琛, 刘星, 吴森堂, 等. 多弹分布式协同末制导时间一致性研究[J]. 控制与决策, 2010, 25(10): 1557-1561.

    PENG C, LIU X, WU S T, et al. Consensus problems in distributed cooperative terminal guidance time of multi-missiles[J]. Control and Decision, 2010, 25(10): 1557-1561(in Chinese).
    [7] 杨剑影, 周佳玲, 魏小倩. 多导弹攻击高机动目标的分布式协同制导关键技术[J]. 航空兵器, 2017, 24(3): 3-12. doi: 10.19297/j.cnki.41-1228/tj.2017.03.001

    YANG J Y, ZHOU J L, WEI X Q. Key technologies of distributed cooperative guidance and control method for multiple missiles attacking the maneuvering target[J]. Aero Weaponry, 2017, 24(3): 3-12(in Chinese). doi: 10.19297/j.cnki.41-1228/tj.2017.03.001
    [8] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6): 1605-1611. doi: 10.3321/j.issn:1000-6893.2008.06.031

    ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1605-1611(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.06.031
    [9] 张帅, 宋天莉, 焦巍, 等. 带有拦截时间约束的协同制导方法[J]. 北京航空航天大学学报, 2023, 49(8): 1956-1963. doi: 10.13700/j.bh.1001-5965.2021.0569

    ZHANG S, SONG T L, JIAO W, et al. Cooperative guidance method with interception time constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 1956-1963(in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0569
    [10] 田野, 蔡远利, 邓逸凡. 一种带时间协同和角度约束的多导弹三维协同制导律[J]. 控制理论与应用, 2022, 39(5): 788-798.

    TIAN Y, CAI Y L, DENG Y F. A 3D cooperative guidance law for multiple missiles with line-of-sight angle constraint[J]. Control Theory & Applications, 2022, 39(5): 788-798(in Chinese).
    [11] CHO D, KIM H J, TAHK M J. Nonsingular sliding mode guidance for impact time control[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1): 61-68. doi: 10.2514/1.G001167
    [12] ZHANG Y A, WANG X L, WU H L. Impact time control guidance law with field of view constraint[J]. Aerospace Science and Technology, 2014, 39: 361-369. doi: 10.1016/j.ast.2014.10.002
    [13] 邹丽, 丁全心, 周锐. 异构多导弹网络化分布式协同制导方法[J]. 北京航空航天大学学报, 2010, 36(12): 1432-1435.

    ZOU L, DING Q X, ZHOU R. Distributed cooperative guidance for multiple heterogeneous networked missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(12): 1432-1435(in Chinese).
    [14] ZHAO S Y, ZHOU R. Cooperative guidance for multimissile salvo attack[J]. Chinese Journal of Aeronautics, 2008, 21(6): 533-539. doi: 10.1016/S1000-9361(08)60171-5
    [15] 邹丽, 周锐, 赵世钰, 等. 多导弹编队齐射攻击分散化协同制导方法[J]. 航空学报, 2011, 32(2): 281-290.

    ZOU L, ZHOU R, ZHAO S Y, et al. Decentralized cooperative guidance for multiple missile groups in salvo attack[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 281-290(in Chinese).
    [16] 王晓芳, 刘冬责, 郑艺裕, 等. 一种基于模型预测控制技术的多导弹协同作战制导方法: CN105202972A[P]. 2017-01-18.

    WANG X F, LIU D Z, ZHENG Y Y, et al. Multi-missile cooperative engagement guidance method based on model predictive control technique: CN105202972A[P]. 2017-01-18(in Chinese).
    [17] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018: 168-171.

    DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing: Science Press, 2018: 168-171(in Chinese).
    [18] CASADO E J M, SCARLATTI D, ESTEBAN-CAMPILLO D, et al. Network of unmanned vehicles: US20140074339[P]. 2014-03-13.
    [19] JOHNSON L, CHOI H L, HOW J P. The hybrid information and plan consensus algorithm with imperfect situational awareness[C]//Proceedings of the Springer Tracts in Advanced Robotics. Berlin: Springer, 2016: 221-233.
    [20] 杨海民, 潘志松, 白玮. 时间序列预测方法综述[J]. 计算机科学, 2019, 46(1): 21-28. doi: 10.11896/j.issn.1002-137X.2019.01.004

    YANG H M, PAN Z S, BAI W. Review of time series prediction methods[J]. Computer Science, 2019, 46(1): 21-28(in Chinese). doi: 10.11896/j.issn.1002-137X.2019.01.004
    [21] 孙雪娇, 周锐, 吴江, 等. 攻击机动目标的多导弹分布式协同制导律[J]. 北京航空航天大学学报, 2013, 39(10): 1403-1407. doi: 10.13700/j.bh.1001-5965.2013.10.023

    SUN X J, ZHOU R, WU J, et al. Distributed cooperative guidance law for multiple missiles attacking maneuver target[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1403-1407(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.10.023
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  45
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 录用日期:  2022-06-10
  • 网络出版日期:  2022-06-20
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答