留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于QAR数据的民机高高原进近着陆风险评估方法

陈农田 满永政 李俊辉

陈农田,满永政,李俊辉. 基于QAR数据的民机高高原进近着陆风险评估方法[J]. 北京航空航天大学学报,2024,50(1):77-85 doi: 10.13700/j.bh.1001-5965.2022.0186
引用本文: 陈农田,满永政,李俊辉. 基于QAR数据的民机高高原进近着陆风险评估方法[J]. 北京航空航天大学学报,2024,50(1):77-85 doi: 10.13700/j.bh.1001-5965.2022.0186
CHEN N T,MAN Y Z,LI J H. Risk assessment method for civil aircraft approach and landing at high plateau based on QAR data[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):77-85 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0186
Citation: CHEN N T,MAN Y Z,LI J H. Risk assessment method for civil aircraft approach and landing at high plateau based on QAR data[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):77-85 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0186

基于QAR数据的民机高高原进近着陆风险评估方法

doi: 10.13700/j.bh.1001-5965.2022.0186
基金项目: 国家自然科学基金民航联合基金重点项目(U2033202); 四川省科技厅重点研发项目(2022YFG0213)
详细信息
    通讯作者:

    E-mail:chennongtian@hotmail.com

  • 中图分类号: V328.5

Risk assessment method for civil aircraft approach and landing at high plateau based on QAR data

Funds: National Natural Science Foundation of China Civil Aviation Joint Fund Key Project (U2033202); Sichuan Provincial Science and Technology Department Key R & D Program (2022YFG0213)
More Information
  • 摘要:

    民机高高原进近着陆是高原飞行高风险阶段。为有效实施高高原进近着陆风险识别和等级判据,提出基于熵权可变模糊识别的长短时记忆网络与深度神经网络(LSTM-DNN)相融合的深度学习风险评估方法。基于快速存取记录器(QAR)记录的高高原飞行数据,借鉴民机飞行品质监控(FOQA)咨询通告和行业QAR 监控标准,结合指标重要度分析与Delphi专家调查,提取着陆时航向变化大、航迹低、610~305 m进近时下降率大、接地时垂直加速度及153~15 m进近时下降率大5个关键监控项目作为民机高高原进近着陆风险评估指标。为克服评估指标权重主观性偏差,应用熵权法确定评估指标权重,基于可变模糊识别方法构建风险等级隶属函数,建立基于LSTM-DNN的民机高高原进近着陆风险评估模型。以成都—拉萨进近着陆航段为例,提取QAR数据,对该风险评估模型进行训练与测试,并与Logistic多元回归、支持向量机(SVM)等评估方法进行比较,结果表明:所提方法平均准确率达到94.18%,最高可达94.79%,验证了方法的客观有效性。

     

  • 图 1  分析框架流程

    Figure 1.  Flow chart of analysis framework

    图 2  深度神经网络

    Figure 2.  Deep neural network

    图 3  准确率变化对比

    Figure 3.  Comparison of accuracy change

    图 4  测试集与验证集准确率变化

    Figure 4.  Accuracy change of trial set and verification set

    图 5  本文方法风险等级识别结果

    Figure 5.  Results of risk level recognition of proposed method

    表  1  空客系列飞机飞FOQA监控项目规范指标(部分)[14]

    Table  1.   Specification indicators of FOQA project for airbus series aircraft (partial)[14]

    监控项目监控参数监控点

    下降率大

    IVV,ALL
    610~305 m(含)
    305~152 m(含)
    152~15 m(含)

    进近滚转角大

    滚转角,ALL
    457~152 m(含)
    152~61 m(含)
    61~15 m(含)
    着陆滚转角大滚转角,ALL15 m至所有机轮接地
    低高速使用减速板减速板,ALL使用减速板
    进近速度小空速,ALL305~15 m(含)
    进近速度大空速,ALL152~15 m(含)
    着陆速度大空速,ALL15 m以下
    ILS下滑道偏离下滑道偏离,ALL305 m以下
    ILS航向道偏离航向道偏离,ALL305 m以下
    低空大速度空速,ALL762 m以下
    下载: 导出CSV

    表  2  FOQA风险评价指标分级标准

    Table  2.   Grading standard of FOQA risk evaluation index

    风险等级 着陆时航向
    变化大/(°)
    153~15 m进近时
    下降率大/(m·min−1)
    航迹低/(°) 610~305 m进近时
    下降率大/(m·min−1)
    接地时垂直
    加速度/g
    0级 <4 ≥−700 ≤2.2 ≥−1200 ≤1.5
    Ⅰ级 [4,5] [−800,−700) (2.2,2.4] [−1500,−1200) (1.5,1.6]
    Ⅱ级 (5,6) (−900,−800) (2.4,2.6) (−1800,−1500) (1.6,1.75)
    Ⅲ级 ≥6 ≤−900 ≥2.6 ≤−1800 ≥1.75
    下载: 导出CSV

    表  3  4种参数组合下综合相对隶属度

    Table  3.   Comprehensive relative membership degree under combination of four parameters

    参数组合 综合相对隶属度 H
    0级 Ⅰ 级 Ⅱ 级 Ⅲ 级
    a=1
    p=1
    0.8935 0.1065 0 0 1.1065
    a=1
    p=2
    0.7680 0.2320 0 0 1.2320
    a=2
    p=1
    0.7207 0.2793 0 0 1.2793
    a=2
    p=2
    0.9385 0.0614 0 0 1.0614
    下载: 导出CSV

    表  4  模糊评价识别结果

    Table  4.   Fuzzy evaluation and recognition results

    样本组 着陆时航向
    变化大/(°)
    153~15 m进近时
    下降率大/(m·min−1)
    航迹低/(°) 610~305 m进近时
    下降率大/(m·min−1)
    接地时垂直
    加速度/g
    等级
    1 1.8 −800 0.01 −912 0.96 0级
    2 1.8 −832 0.08 −976 1.0 0级
    3 4 −832 5 −1316 1.15 Ⅰ级
    4 9 −848 7 −1558 0.5 Ⅱ级
    5 0.6 −864 0.1 −800 0.98 Ⅰ级
    499 2 −656 0 −999 2.80 Ⅱ级
    500 8 −672 5 −988 3.78 Ⅲ级
    下载: 导出CSV

    表  5  不同隐藏层DNN预测值

    Table  5.   Predicted values of DNN with different hidden layers

    隐藏层数 预测值
    1 0.00701
    3 0.00201
    5 0.00794
    下载: 导出CSV

    表  6  成都—拉萨进近着陆航段QAR数据(部分)

    Table  6.   QAR data of Chengdu−Lhasa approach and landing segment (partial)

    样本数量 着陆时航向
    变化大/(°)
    153~15 m进近时
    下降率大/(m·min−1)
    航迹低/(°) 610~305 m进近时
    下降率大/(m·min−1)
    接地时垂直
    加速度/g
    等级
    1 0.9 −763 0.11 −896 0.99 0 级
    2 0.6 −729 0.11 −880 1.01 0 级
    50 1.6 −700 8 −832 0.96 0 级
    51 2 −649 4 −848 1.01 Ⅰ 级
    99 1 −832 4 −730 2.44 Ⅱ 级
    100 1.7 −630 −0.67 −726 1.01 0 级
    下载: 导出CSV
  • [1] 中国民用航空局飞行标准司. 高原机场运行: AC-121-FS-2015-21R1[S]. 北京: 中国民用航空局, 2015.

    Flight Standards Department of Civil Aviation Administration of China. Plateau airport operation: AC-121-FS-2015-21R1[S]. Beijing: Civil Aviation Administration of China, 2015(in Chinese).
    [2] 杨志刚, 张炯, 李博, 等. 民用飞机智能飞行技术综述[J]. 航空学报, 2021, 42(4): 525198.

    YANG Z G, ZHANG J, LI B, et al. Reviews on intelligent flight technology of civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525198(in Chinese).
    [3] 罗婷婷, 孙瑞山. 基于Petri网的进近操作管理模型研究[J]. 中国安全生产科学技术, 2013, 9(11): 137-141.

    LUO T T, SUN R S. Study on management system model for approach based on Petri net[J]. Journal of Safety Science and Technology, 2013, 9(11): 137-141(in Chinese).
    [4] International Civil Aviation Organization. Safety management manual: Doc 9859[S]. Montreal: International Civil Aviation Organization, 2018.
    [5] XU Y J, HOU W K, LI W Z, et al. Aero-engine gas-path fault diagnosis based on spatial structural characteristics of QAR data[C]//Proceedings of the Annual Reliability and Maintainability Symposium. Piscataway: IEEE Press, 2018: 1-7.
    [6] KLUEVER C A. Unpowered approach and landing guidance with normal acceleration limitations[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 882-885. doi: 10.2514/1.28081
    [7] 周长春, 胡栋栋. 基于灰色聚类方法的航空公司飞机进近着陆阶段安全性评估[J]. 中国安全生产科学技术, 2012, 8(7): 99-102.

    ZHOU C C, HU D D. Safety assessment of aircraft during approach-landing stage based on grey clustering method[J]. Journal of Safety Science and Technology, 2012, 8(7): 99-102(in Chinese).
    [8] 高小霞, 霍纬纲, 冯兴杰. 基于模糊关联分类器的民机超限事件诊断方法[J]. 北京航空航天大学学报, 2014, 40(10): 1366-1371.

    GAO X X, HUO W G, FENG X J. Civil aircraft’s exceedance event diagnosis method based on fuzzy associative classifier[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10): 1366-1371(in Chinese).
    [9] 祁明亮, 邵雪焱, 池宏. QAR超限事件飞行操作风险诊断方法[J]. 北京航空航天大学学报, 2011, 37(10): 1207-1210.

    QI M L, SHAO X Y, CHI H. Flight operations risk diagnosis method on quick-access-record exceedance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10): 1207-1210(in Chinese).
    [10] WANG L, ZHANG J Y, DONG C T, et al. A method of applying flight data to evaluate landing operation performance[J]. Ergonomics, 2019, 62(2): 171-180. doi: 10.1080/00140139.2018.1502806
    [11] 鲁志东, 张曙光, 戴闰志, 等. 大型民机进近着陆段异常能量风险判据[J]. 航空学报, 2021, 42(6): 624132.

    LU Z D, ZHANG S G, DAI R Z, et al. Abnormal energy risk criteria of large civil airplanes in approach and landing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624132(in Chinese).
    [12] 李哲, 徐浩军, 薛源, 等. 基于风险预测的飞行安全操纵空间构建方法[J]. 北京航空航天大学学报, 2018, 44(9): 1839-1849.

    LI Z, XU H J, XUE Y, et al. Construction method of flight safety manipulation space based on risk prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1839-1849(in Chinese).
    [13] 徐骏驰, 孙有朝. 运输类飞机高高原机场运行的适航验证方法[J]. 航空计算技术, 2018, 48(2): 129-134.

    XU J C, SUN Y C. Airworthiness requirement of transportation category aircraft operation on high altitude airports[J]. Aeronautical Computing Technique, 2018, 48(2): 129-134(in Chinese).
    [14] 中国民用航空局飞行标准司. 飞行品质监控(FOQA)实施与管理: AC-121/135-FS-2012-45R1[S]. 北京: 中国民用航空局, 2012.

    Flight Standards Department of Civil Aviation Administration of China. Implementation and management of flight operation quality assurance(FOQA): AC-121/135-FS-2012-45R1[S]. Beijing: Civil Aviation Administration of China, 2012(in Chinese).
    [15] CUI L F, ZHANG C Q, ZHANG Q Z, et al. A method for aero-engine gas path anomaly detection based on Markov transition field and multi-LSTM[J]. Aerospace, 2021, 8(12): 374. doi: 10.3390/aerospace8120374
    [16] ATASOY V E, CETEK C. Enhanced cruise range prediction for narrow-body turbofan commercial aircraft based on QAR data[J]. The Aeronautical Journal, 2021, 125(1286): 672-701. doi: 10.1017/aer.2020.121
    [17] 张鹏, 杨涛, 刘亚楠, 等. 基于CNN-LSTM的QAR数据特征提取与预测[J]. 计算机应用研究, 2019, 36(10): 2958-2961.

    ZHANG P, YANG T, LIU Y N, et al. Feature extraction and prediction of QAR data based on CNN-LSTM[J]. Application Research of Computers, 2019, 36(10): 2958-2961(in Chinese).
    [18] 刘柳. 基于QAR数据的着陆阶段飞行风险研究[D]. 重庆: 重庆大学, 2018.

    LIU L. Research on flight risk in landing using QAR data[D]. Chongqing: Chongqing University, 2018(in Chinese).
    [19] 郑磊, 池宏, 邵雪焱. 基于QAR数据的飞行操作模式及其风险分析[J]. 中国管理科学, 2017, 25(10): 109-118.

    ZHENG L, CHI H, SHAO X Y. Pattern recognition and risk analysis for flight operations[J]. Chinese Journal of Management Science, 2017, 25(10): 109-118(in Chinese).
    [20] 李俊辰. 基于机器学习的起飞、进近阶段飞行成绩评估[D]. 天津: 中国民航大学, 2020.

    LI J C. Flight performance evaluation during takeoff and approach based on machinelearning[D]. Tianjin: Civil Aviation University of China, 2020(in Chinese).
    [21] KONDO S, KIDERA S, KIRIMOTO T. Target detection algorithm using independent component analysis for pulse Doppler radar[J]. IEICE Communications Express, 2014, 3(7): 211-216. doi: 10.1587/comex.3.211
    [22] 陈勇刚, 熊升华, 贺强, 等. 通用航空机队设备可靠性动态识别模型[J]. 航空学报, 2018, 39(3): 172-183.

    CHEN Y G, XIONG S H, HE Q, et al. Dynamic recognition method for reliability of general aviation fleet equipment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 172-183(in Chinese).
    [23] 陈守煜. 可变模糊集理论与模型及其应用[M]. 大连: 大连理工大学出版社, 2009.

    CHEN S Y. Theory and model of variable fuzzy sets and its application[M]. Dalians: Dalian University of Technology Press, 2009(in Chinese).
    [24] KUMAR R K, RAO K S. A novel approach to unsupervised pattern discovery in speech using convolutional neural network[J]. Computer Speech & Language, 2022, 71: 101259.
    [25] PRAYUDA M F. Classification of sad emotions and depression through images using convolutional neural network (CNN)[J]. Jurnal Informatika Universitas Pamulang, 2021, 6(1): 90. doi: 10.32493/informatika.v6i1.8433
    [26] 王奕惟, 莫李平, 王奕首, 等. 基于全航段QAR数据和卷积神经网络的航空发动机状态辨识[J]. 航空动力学报, 2021, 36(7): 1556-1563.

    WANG Y W, MO L P, WANG Y S, et al. Aero-engine status identification based on full-segment QAR data and convolutional neural network[J]. Journal of Aerospace Power, 2021, 36(7): 1556-1563(in Chinese).
    [27] 王帅, 黄海鸿, 韩刚, 等. 基于PCA与GA-BP神经网络的磁记忆信号定量评价[J]. 电子测量与仪器学报, 2018, 32(10): 190-196.

    WANG S, HUANG H H, HAN G, et al. Quantitative evaluation of magnetic memory signal based on PCA & GA-BP neural network[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(10): 190-196(in Chinese).
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  63
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 录用日期:  2022-06-14
  • 网络出版日期:  2022-06-24
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答