留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

恶劣天气下机场离场航班运行韧性评估及恢复

王兴隆 赵俊妮 王进

王兴隆,赵俊妮,王进. 恶劣天气下机场离场航班运行韧性评估及恢复[J]. 北京航空航天大学学报,2024,50(1):110-121 doi: 10.13700/j.bh.1001-5965.2022.0193
引用本文: 王兴隆,赵俊妮,王进. 恶劣天气下机场离场航班运行韧性评估及恢复[J]. 北京航空航天大学学报,2024,50(1):110-121 doi: 10.13700/j.bh.1001-5965.2022.0193
WANG X L,ZHAO J N,WANG J. Resilience assessment and recovery of airport departure flights under severe weather[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):110-121 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0193
Citation: WANG X L,ZHAO J N,WANG J. Resilience assessment and recovery of airport departure flights under severe weather[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):110-121 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0193

恶劣天气下机场离场航班运行韧性评估及恢复

doi: 10.13700/j.bh.1001-5965.2022.0193
基金项目: 国家重点研发计划(2020YFB1600101);国家自然科学基金(62173332);天津市教育委员会自然科学重点基金(2020ZD01)
详细信息
    通讯作者:

    E-mail:jwang@cauc.edu.cn

  • 中图分类号: U8;V355.2

Resilience assessment and recovery of airport departure flights under severe weather

Funds: National Key R & D Program of China (2020YFB1600101); National Natural Science Foundation of China (62173332); Natural Science Key project of Tianjin Municipal Education Commission (2020ZD01)
More Information
  • 摘要:

    为保障恶劣天气下机场整体性能,科学评估机场离场航班运行韧性,提高航班恢复能力,从而有效缓解天气的影响。给出机场离场航班运行定义,从机场离场航班运行系统性能出发,分析航班离场延误时间、离场总延误时间、离场航班正常率和机场离场航班运行系统综合韧性指数4个指标,对系统在恶劣天气条件下的韧性变化进行评估;提出机场离场航班运行系统性能恢复策略,利用遗传算法对离场延误航班进行优化排序;以2012年北京首都国际机场“721”特大暴雨事件为实例进行数据分析,得到暴雨影响下首都机场的性能指标和韧性指数,对比分析机场离场航班运行系统性能及韧性水平变化。研究结果表明:受暴雨影响,机场离场航班运行系统综合韧性指数由0.4573下降到0.0628,暴雨减小后上升到0.2223;在进行航班优化排序后,离场航班总延误时间减少了24.85%,优化后机场性能恢复速度提升了13.89%,优化后的机场离场航班运行系统最小韧性指数提升了13.38%,系统性能优先恢复至初始状态,表明所提恢复策略有效。

     

  • 图 1  时刻$t$计划累计航班量与实际累计航班量对比

    Figure 1.  Comparison of planned cumulative flight volume and actual cumulative flight volume at time t

    图 2  外界干扰下系统韧性变化图

    Figure 2.  Change diagram of system resilience under external disturbances

    图 3  系统韧性示意图

    Figure 3.  System resilience diagram

    图 4  遗传算法流程

    Figure 4.  Genetic algorithm flow

    图 5  航班小时离场延误

    Figure 5.  Flight hours departure delay

    图 6  小时计划离场航班与实际离场航班对比

    Figure 6.  Hourly scheduled departure flight and actual departure flight comparison

    图 7  计划累计离场航班与实际累计离场航班对比

    Figure 7.  Comparison of planned cumulative departure flights and actual cumulative departure flights

    图 8  21日19:00至22日03:00顺义区小时降雨量

    Figure 8.  Hourly rainfall in Shunyi District from 19:00 on the 21st to 03:00 on the 22nd

    图 9  首都机场离场航班运行系统性能变化

    Figure 9.  Performance change of flight operation system of Capital Airport Departure

    图 10  离场航班延误时间

    Figure 10.  Delay of departing flights

    图 11  韧性变化

    Figure 11.  Resilience change

    图 12  优化后航班小时离场延误

    Figure 12.  Optimized flight hour departure delay

    图 13  优化后性能变化

    Figure 13.  Change in performance after optimization

    图 14  优化后韧性变化

    Figure 14.  Change in resilience after optimization

    表  1  不同机型延误成本及航班优先级

    Table  1.   Delay cost and flight priority of different aircraft types

    机型 最大起飞质量/kg 延误成本/(元·h−1) 优先级
    轻型机(L) <7000 208 0.3
    中型机(M) 7000~136000 2916 4
    重型机(H) >136000 4167 5.7
    下载: 导出CSV

    表  3  时间分段表

    Table  3.   Time interval schedule

    降雨量 时间段
    大雨 [20:00,21:00],[00:55,02:05]
    中雨 [21:05,23:20],[00:40,00:50],[02:10,02:30]
    小雨 [23:25,00:35],[02:35,12:00]
    下载: 导出CSV

    表  4  优化前航班时刻表(部分)

    Table  4.   Flight schedule before optimization (partial)

    航班编号 计划起飞时刻 实际起飞时刻 延误时间/min 航班编号 计划起飞时刻 实际起飞时刻 延误时间/min
    1 10:50 21:05 615 11 13:25 01:55 750
    2 11:45 21:20 575 12 13:25 03:31 846
    3 11:55 22:58 663 13 14:00 21:54 474
    4 12:05 21:43 578 14 14:05 22:00 475
    5 12:30 22:01 571 15 14:05 02:57 772
    6 12:50 23:13 623 16 14:15 23:05 530
    7 13:00 21:46 526 17 14:45 22:47 482
    8 13:00 01:49 769 18 14:50 21:17 387
    9 13:15 21:14 479 19 14:55 21:19 384
    10 13:20 22:30 550 20 14:55 22:51 476
    下载: 导出CSV

    表  5  优化后离场航班时刻表(部分)

    Table  5.   Optimized departure flight schedule (partial)

    航班编号 计划起飞时刻 实际起飞时刻 延误时间/min 航班编号 计划起飞时刻 实际起飞时刻 延误时间/min
    1 10:50 21:50 660 11 13:25 22:45 560
    2 11:45 21:35 590 12 13:25 03:00 815
    3 11:55 22:00 605 13 14:00 22:30 510
    4 12:05 21:55 590 14 14:05 22:50 525
    5 12:30 22:05 575 15 14:05 22:35 510
    6 12:50 22:10 560 16 14:15 23:00 525
    7 13:00 22:25 565 17 14:45 23:10 505
    8 13:00 22:20 560 18 14:50 23:05 495
    9 13:15 22:15 540 19 14:55 23:20 505
    10 13:20 22:40 560 20 14:55 03:10 735
    下载: 导出CSV
  • [1] MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]// Proceedings of the 2006 Winter Simulation Conference. Piscataway: IEEE Press, 2007: 1398-1405.
    [2] GAO J X, BARZEL B, BARABÁSI A L. Universal resilience patterns in complex networks[J]. Nature, 2016, 530(7590): 307-312. doi: 10.1038/nature16948
    [3] IP W H, WANG D W. Resilience and friability of transportation networks: Evaluation, analysis and optimization[J]. IEEE Systems Journal, 2011, 5(2): 189-198. doi: 10.1109/JSYST.2010.2096670
    [4] LORDAN O, SALLAN J M, SIMO P, et al. Robustness of the air transport network[J]. Transportation Research Part E, 2014, 68: 155-163. doi: 10.1016/j.tre.2014.05.011
    [5] 王德龙, 王超峰. 基于蓄意攻击下的民用机场网络级联失效抗毁性分析[J]. 交通运输工程与信息学报, 2020, 18(3): 172-178. doi: 10.3969/j.issn.1672-4747.2020.03.020

    WANG D L, WANG C F. Analysis of cascading failure and resistance of network in civil airports based on deliberate attacks[J]. Journal of Traffic and Transportation Engineering and Information, 2020, 18(3): 172-178(in Chinese). doi: 10.3969/j.issn.1672-4747.2020.03.020
    [6] D’LIMA M, MEDDA F. A new measure of resilience: An application to the London Underground[J]. Transportation Research Part A:Policy and Practice, 2015, 81: 35-46. doi: 10.1016/j.tra.2015.05.017
    [7] SUN W M, ZENG A. Target recovery in complex networks[J]. The European Physical Journal B, 2017, 90(1): 10. doi: 10.1140/epjb/e2016-70618-0
    [8] NAN C , SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering & System Safety, 2017, 157: 35-53
    [9] 王兴隆, 苗尚飞. 空域扇区网络结构特性分析及韧性评估[J]. 北京航空航天大学学报, 2021, 47(5): 904-911. doi: 10.13700/j.bh.1001-5965.2020.0084

    WANG X L, MIAO S F. Structural characteristics analysis and resilience assessment of airspace sector network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 904-911(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0084
    [10] JANIĆ M. Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event[J]. Transportation Research Part A:Policy and Practice, 2015, 71: 1-16. doi: 10.1016/j.tra.2014.10.023
    [11] 潘维煌. 基于相依网络理论的空中交通系统脆弱性研究[D]. 天津: 中国民航大学, 2019.

    PAN W H. Research on the vulnerability of air traffic system based on interdependent network theory [D]. Tianjin: Civil Aviation University of China, 2019(in Chinese).
    [12] 周语, 邵荃. 基于不确定因素扰动的机场大面积航班恢复规划[J]. 科学技术与工程, 2018, 18(16): 300-305. doi: 10.3969/j.issn.1671-1815.2018.16.048

    ZHOU Y, SHAO Q. Airport large-scale flight recovery planning based on uncertainty disturbance[J]. Science Technology and Engineering, 2018, 18(16): 300-305(in Chinese). doi: 10.3969/j.issn.1671-1815.2018.16.048
    [13] 张启钱, 胡明华, 施赛锋, 等. 多跑道航班起降调度优化算法[J]. 交通运输工程学报, 2012, 12(6): 63-68. doi: 10.3969/j.issn.1671-1637.2012.06.010

    ZHANG Q Q, HU M H, SHI S F, et al. Optimization algorithm of flight takeoff and landing on multi-runways[J]. Journal of Traffic and Transportation Engineering, 2012, 12(6): 63-68(in Chinese). doi: 10.3969/j.issn.1671-1637.2012.06.010
    [14] INNISS T R, BALL M O. Estimating one-parameter airport arrival capacity distributions for air traffic flow management[J]. Air Traffic Control Quarterly, 2004, 12(3): 223-251. doi: 10.2514/atcq.12.3.223
    [15] KLEIN A, CRAUN C, LEE R S. Airport delay prediction using weather-impacted traffic index (WITI) model[C]// 29th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2010: 1-13.
    [16] KICINGER R, SABHNANI G, KRISHNA S, et al. Comparison of the impacts of airport terminal/surface weather hazards[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2011: 6385.
    [17] 王时敏. 恶劣天气对航班延误影响的初步量化研究[D]. 南京: 南京航空航天大学, 2017.

    WANG S M. Research on the impact of severe weather on flight delay[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [18] 尉炜, 邵荃, 向红奕, 等. 基于复杂网络的恶劣天气对航班延误影响的研究[J]. 航空计算技术, 2018, 48(2): 48-51. doi: 10.3969/j.issn.1671-654X.2018.02.012

    WEI W, SHAO Q, XIANG H Y, et al. Research on impact of bad weather based on complex network on flight delay[J]. Aeronautical Computing Technique, 2018, 48(2): 48-51(in Chinese). doi: 10.3969/j.issn.1671-654X.2018.02.012
    [19] WANG Y J, ZHAN J M, XU X H, et al. Measuring the resilience of an airport network[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2694-2705. doi: 10.1016/j.cja.2019.08.023
    [20] HENRY D, EMMANUEL RAMIREZ-MARQUEZ J. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012, 99: 114-122.
    [21] 王楠, 戴福青, 齐雁楠. 基于-跑道容量的航班恢复优化模型[J]. 科学技术与工程, 2020, 20(15): 6279-6285. doi: 10.3969/j.issn.1671-1815.2020.15.056

    WANG N, DAI F Q, QI Y N. Flight recovery optimization model based on runway capacity[J]. Science Technology and Engineering, 2020, 20(15): 6279-6285(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.15.056
    [22] 段伯隆, 张文龙, 刘海文, 等. 北京“7.21”特大暴雨过程暖区降水和锋面降水的时空分布特征[J]. 暴雨灾害, 2017, 36(2): 108-117. doi: 10.3969/j.issn.1004-9045.2017.02.002

    DUAN B L, ZHANG W L, LIU H W, et al. The spatial and temporal distributions of warm sector rainfall and frontal rainfall for the torrential rain event in Beijing on 21 July 2012[J]. Torrential Rain and Disasters, 2017, 36(2): 108-117(in Chinese). doi: 10.3969/j.issn.1004-9045.2017.02.002
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  30
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 录用日期:  2022-07-10
  • 网络出版日期:  2022-07-19
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答