留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界二氧化碳闭式布莱顿循环系统研究进展

邹正平 王一帆 姚李超 刘火星 许鹏程 李辉

邹正平, 王一帆, 姚李超, 等 . 超临界二氧化碳闭式布莱顿循环系统研究进展[J]. 北京航空航天大学学报, 2022, 48(9): 1643-1677. doi: 10.13700/j.bh.1001-5965.2022.0196
引用本文: 邹正平, 王一帆, 姚李超, 等 . 超临界二氧化碳闭式布莱顿循环系统研究进展[J]. 北京航空航天大学学报, 2022, 48(9): 1643-1677. doi: 10.13700/j.bh.1001-5965.2022.0196
ZOU Zhengping, WANG Yifan, YAO Lichao, et al. Progress in research of closed supercritical carbon dioxide Brayton cycle system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1643-1677. doi: 10.13700/j.bh.1001-5965.2022.0196(in Chinese)
Citation: ZOU Zhengping, WANG Yifan, YAO Lichao, et al. Progress in research of closed supercritical carbon dioxide Brayton cycle system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1643-1677. doi: 10.13700/j.bh.1001-5965.2022.0196(in Chinese)

超临界二氧化碳闭式布莱顿循环系统研究进展

doi: 10.13700/j.bh.1001-5965.2022.0196
基金项目: 

航空发动机气动热力国防科技重点实验室基金 2021-JCJQ-LB-062-0205

详细信息
    通讯作者:

    姚李超, E-mail: ylcpersonal@buaa.edu.cn

  • 中图分类号: TK123

Progress in research of closed supercritical carbon dioxide Brayton cycle system

Funds: 

Fundation of National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics 2021-JCJQ-LB-062-0205

More Information
  • 摘要:

    超临界二氧化碳(SCO2)闭式布莱顿循环凭借高热效率、高紧凑性和高经济-环保性等优势,已成为能源与动力领域的热点技术之一。针对超临界二氧化碳闭式布莱顿循环,详细介绍了工作原理、优势及国内外相关研究进展,总结了循环总体热力、超临界工质叶轮机、紧凑高效换热器、控制及储热等相关关键技术的研究现状,并对当前工程应用面临的问题和未来技术发展方向进行了分析和展望。分析表明,循环总体热力设计阶段应涵盖部件低维性能分析,以评估部件性能指标的可实现性,并综合考虑全寿命周期性能、紧凑性、经济性等指标。工质的剧烈物性变化导致叶轮机与换热器内部特殊流动与换热机理,需发展充分考虑工质特殊物性影响的叶轮机和紧凑换热器设计方法;通过理论分析和机器深度学习相结合构建不同工质叶轮机相似方法,可为超临界二氧化碳叶轮机气动性能试验验证提供理论基础。此外,鲁棒高效的控制策略可实现超临界二氧化碳闭式布莱顿循环有效可靠调控,而集成新型介质储热技术的超临界二氧化碳闭式布莱顿循环系统将为高温光热发电提供关键技术支撑。

     

  • 图 1  SCO2在临界点附近的剧烈物性变化

    Figure 1.  Dramatic variation of properties of SCO2 near critical point

    图 2  SCO2闭式布莱顿循环的性能优势

    Figure 2.  Performance advantages of closed SCO2 Brayton cycle

    图 3  SCO2闭式布莱顿循环潜在应用领域

    Figure 3.  Potential applications of closed SCO2 Brayton cycle

    图 4  SNL SCO2闭式布莱顿循环系统试验验证平台[34]

    Figure 4.  Experimental platform of closed SCO2 Brayton cycle at SNL[34]

    图 5  典型的SCO2闭式布莱顿循环构型及其演化关系

    Figure 5.  Layouts and derivative relationships of typical closed SCO2 Brayton cycles

    图 6  典型的SCO2闭式布莱顿循环性能对比[55]

    Figure 6.  Performance comparison of typical close SCO2 Brayton cycles[55]

    图 7  多再压缩循环构型[55]

    Figure 7.  Layout of multi-recompression cycle[55]

    图 8  不同再压缩单元数时多再压缩循环性能对比[55]

    Figure 8.  Performance comparison of multi-recompression cycle with different recompression units[55]

    图 9  再压缩循环“零维”优化设计结果[73]

    Figure 9.  0D optimal design result of recompression cycle[73]

    图 10  再压缩循环“一维”耦合设计方法

    Figure 10.  1D coupled design method of recompression cycle

    图 11  SCO2工质真实气体效应表征参数

    Figure 11.  Parameters for real gas effect of SCO2

    图 12  SCO2压气机进口局部冷凝相变

    Figure 12.  Local condensation phrase change at SCO2 compressor inlet

    图 13  SCO2叶轮机气动设计流程

    Figure 13.  Aerodynamic design process of SCO2 turbomachinery

    图 14  SCO2叶轮机一维性能预测方法校验

    Figure 14.  Validation of 1D performance prediction method for SCO2 turbomachinery

    图 15  离心压气机分流叶片流向起始位置的影响

    Figure 15.  Effect of streamwise location of centrifugal compressor splitter leading edge

    图 16  离心压气机叶轮出口叶尖间隙的影响

    Figure 16.  Effect of tip clearance at centrifugal compressor runner outlet

    图 17  向心涡轮转轮余高的影响

    Figure 17.  Effect of extra height of radial turbine runner

    图 18  向心涡轮转轮叶片数的影响

    Figure 18.  Effect of blade number of radial turbine runner

    图 19  基于复合弯掠前加载叶片的SCO2涡轮性能改进[97]

    Figure 19.  Performance improvement of SCO2 turbine based on composite curved and swept front-loading blade[97]

    图 20  用以训练数据库的DNN结构[100]

    Figure 20.  DNN structure for data training[100]

    图 21  SCO2压气机相似方法校验[100]

    Figure 21.  Validation of similarity method for SCO2 compressor[100]

    图 22  SNL离心压气机和向心涡轮[101-102]

    Figure 22.  Centrifugal compressor and radial turbine at SNL[101-102]

    图 23  KAERI压气机试验[103]

    Figure 23.  Compressor experiment at KAERI[103]

    图 24  应用于SCO2闭式布莱顿循环系统的紧凑式换热器

    Figure 24.  Compact heat exchangers used for closed SCO2 Brayton cycles system

    图 25  水平加热圆管内超临界流体瞬时参量分布(混合对流工况)[119]

    Figure 25.  Instantaneous parameter distribution of supercritical fluid in a horizontal heated tube (mixed convection)[119]

    图 26  水平加热圆管内超临界流体湍流行为与湍流换热量关系[119]

    Figure 26.  Relationship between turbulence behavior and turbulent heat transfer of supercritical fluid in a horizontal heated tube[119]

    图 27  竖直加热圆管内SCO2密度与速度分布[122]

    Figure 27.  Density and velocity distributions of SCO2 in a heated vertical tube[122]

    图 28  紧凑式换热器离散设计方法

    Figure 28.  Segmented design method for compact heat exchanger

    图 29  基本换热单元并联热阻模型[131]

    Figure 29.  Parallel thermal resistance model for heat transfer unit[131]

    图 30  PCHE典型通道类型

    Figure 30.  Typical flow passage type of PCHE

    图 31  PCHE换热器不同入口封头的影响[144]

    Figure 31.  Effects of different inlet headers of PCHE[144]

    图 32  PCHE加工过程[131]

    Figure 32.  Processing route of PCHE[131]

    图 33  100 kW级PCHE试验结果[158]

    Figure 33.  Experimental results of 100 kW class PCHE[158]

    图 34  典型的SCO2再压缩循环控制策略

    Figure 34.  Typical control strategy for SCO2 recompression cycle

    图 35  聚焦式太阳能发电系统(集成SCO2再压缩循环)

    Figure 35.  Concentrating solar power system (integrated with SCO2 recompression cycle)

    图 36  SNL叶轮机气浮轴承及迷宫封严结构[184]

    Figure 36.  Turbomachinery gas foil bearing and labyrinth seal structure at SNL[184]

    表  1  循环部件“零维”热力学模型

    Table  1.   0D thermodynamic model for cycle components

    部件 模型
    下载: 导出CSV

    表  2  循环部件经济性模型

    Table  2.   Economic model for cycle components

    部件 成本公式
    回热器 2 500UA[64]
    冷却器 2 300UA[67-68]
    热源换热器 3 500UA[67-68]或283[66, 69]
    压气机 6 898W0.786 5[68]
    [66, 69]
    涡轮 7 790W0.684 2[68]
    [66, 69]
    注:模型中成本单位为美元,导热率UA单位为kW/K,换热量和功率W单位为kW。
    下载: 导出CSV

    表  3  再压缩循环“一维”耦合设计结果

    Table  3.   1D coupled design results of recompression cycle

    循环 循环流量/(kg·s-1) 循环热效率/% 主压缩压气机等熵效率/% 再压缩压气机等熵效率/% 涡轮等熵效率/%
    CYC-A 7.85 37.00 78.67 78.58 82.44
    CYC-B 75.49 38.00 81.00 81.76 83.37
    相对增量/% ~860 1.00 2.33 3.18 0.93
    下载: 导出CSV

    表  4  SCO2叶轮机一维性能预测模型基本方程

    Table  4.   Basic equations for 1D performance prediction of SCO2 turbomachinery

    叶轮机 损失项 基本方程
    离心压气机 射流区
    尾迹区
    掺混面
    向心涡轮 攻角损失
    转子通道损失
    叶尖泄漏损失
    尾缘损失
    鼓风损失
    下载: 导出CSV

    表  5  真实气体工质叶轮机特性相似参数

    Table  5.   Similarity parameters for real

    相似参数 表达式
    下载: 导出CSV

    表  6  SCO2 PCHE流动与换热经验关联式

    Table  6.   Flow and heat transfer correlations for SCO2 PCHE

    通道类型 研究人员 经验关联式 适用范围
    直线型 Chu等[159] 3 000 < Re < 60 000
    3 000 < Re < 70 000
    Liu等[163] 3 600 < Re < 36 500
    Z字型 Ngo等[162] 3 500 < Re < 22 000
    Nikitin等[156]
    S形翅片 Ngo等[162] 3 500 < Re < 23 000
    Zhao等[164]
    翼形翅片 Pidaparti等[143] 4 000 < Re < 38 000
    3 800 < Re < 38 000
    下载: 导出CSV
  • [1] TAKIZUKA T, TAKADA S, YAN X, et al. R&D on the power conversion system for gas turbine high temperature reactors[J]. Nuclear Engineering and Design, 2004, 233(1-3): 329-346. doi: 10.1016/j.nucengdes.2004.08.017
    [2] HERRANZ L E, LINARES J I, MORATILLA B Y. Power cycle assessment of nuclear high temperature gas-cooled reactors[J]. Applied Thermal Engineering, 2009, 29(8): 1759-1765.
    [3] EL-GENK M S, TOURNIER J M. Noble-gas binary mixtures for closed-Brayton-cycle space reactor power systems[J]. Journal of Propulsion and Power, 2007, 23(4): 863-873. doi: 10.2514/1.27664
    [4] EL-GENK M S, TOURNIER J M. Selection of noble gas binary mixtures for Brayton space nuclear power systems[C]//Proceedings of the International Energy Conversion Engineering Conference and Exhibit, 2006: 4168-4176.
    [5] KLAUS B, PETER F, RICHARD D. Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles[M]. Cambridge: Woodhead Publishing, 2017.
    [6] CRESPI F, GAVAGNIN G, SANCHEZ D, et al. Supercritical carbon dioxide cycles for power generation: A review[J]. Applied Energy, 2017, 195: 152-183. doi: 10.1016/j.apenergy.2017.02.048
    [7] FEHER E G. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2): 85-90. doi: 10.1016/0013-7480(68)90105-8
    [8] HOFFMANN J R, FEHER E G. 150 kwe supercritical closed cycle system[J]. Journal of Engineering for Power, 1971, 93(1): 70-80. doi: 10.1115/1.3445409
    [9] ANGELINO G. Perspectives for the liquid phase compression gas turbine[J]. Journal of Engineering for Power, 1967, 89(2): 229-236. doi: 10.1115/1.3616657
    [10] ANGELINO G. Carbon dioxide condensation cycles for power production[J]. Journal of Engineering for Power, 1968, 90(3): 287-295. doi: 10.1115/1.3609190
    [11] DIEVOT J P. The sodium-CO2 fast breeder reactor concept[C]//International Conference on Sodium Technology and Large Fast Reactor Design, 1968: 7-9.
    [12] GOKHSTEIN D P. Use of carbon dioxide as a heat carrier and working substance in atomic power station[J]. Soviet Atomic Energy, 1969, 26(4): 378-380. doi: 10.1007/BF01371872
    [13] GOKHSTEIN D P, VERKHIVKER G P. Future design of thermal power stations operating on carbon dioxide[J]. Thermal Engineering, 1971, 18(4): 36-38.
    [14] DOSTAL V, DRISCOLL M J, HEJZLAR P. A supercritical carbon dioxide cycle for next generation nuclear reactors: MIT-ANP-TR-100[R]. Cambridge: MIT, 2004.
    [15] DOSTAL V, HEJZLAR P, DRISCOLL M J. High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors[J]. Nuclear Technology, 2006, 154(3): 264-282.
    [16] AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
    [17] FLEMING D D, HOLSCHUH T V, CONBOY T M, et al. Scaling considerations for a multi-megawatt class supercritical CO2 Brayton cycle and commercialization[C]//Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2012, 5: 953-960.
    [18] ISHIYAMA S, MUTO Y, KATO Y, et al. Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor[J]. Progress in Nuclear Energy, 2008, 50(2-6): 325-332. doi: 10.1016/j.pnucene.2007.11.078
    [19] LIAO G L, LIU L J, E J Q, et al. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: A review[J]. Energy Conversion and Management, 2019, 199: 11986.
    [20] CLEMENTONI E M, COX T L. Practical aspects of supercritical carbon dioxide Brayton system testing[C]//Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, 2014: 1-7.
    [21] WANG K, HE Y L, ZHU H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195: 819-836. doi: 10.1016/j.apenergy.2017.03.099
    [22] HO C K, CARLSON M, GARG P, et al. Technoeconomic analysis of alternative solarized s-CO2 Brayton cycle configurations[J]. Journal of Solar Energy Engineering, 2016, 138(5): 051008. doi: 10.1115/1.4033573
    [23] VISWANATHAN R, COLEMAN K, RAO U. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11-12): 778-783. doi: 10.1016/j.ijpvp.2006.08.006
    [24] PARK S H, KIM J Y, YOON M K, et al. Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle[J]. Applied Thermal Engineering, 2018, 130: 611-623. doi: 10.1016/j.applthermaleng.2017.10.145
    [25] MANJUNATH K, SHARMA O P, TYAGI S K, et al. Thermodynamic analysis of a supercritical/transcritical CO2 based waste heat recovery cycle for shipboard power and cooling applications[J]. Energy Conversion and Management, 2018, 155: 262-275. doi: 10.1016/j.enconman.2017.10.097
    [26] SHARMA O P, KAUSHIK S C, MANJUNATH K. Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery[J]. Thermal Science and Engineering Progress, 2017, 3: 62-74. doi: 10.1016/j.tsep.2017.06.004
    [27] CHENG K L, QIN J, SUN H C, et al. Power optimization and comparison between simple recuperated and recompression supercritical carbon dioxide closed-Brayton-cycle with finite cold source on hypersonic vehicles[J]. Energy, 2019, 181: 1189-1201. doi: 10.1016/j.energy.2019.06.010
    [28] JACOB F, ROLT A M, SEBASTIAMPILLAI J M, et al. Performance of a supercritical CO2 bottoming cycle for aero applications[J]. Applied Sciences, 2017, 7(2): 255.
    [29] MIAO H Y, WANG Z W, NIU Y B. Performance analysis of cooling system based on improved supercritical CO2 Brayton cycles for scramjet[J]. Applied Thermal Engineering, 2020, 167: 114774. doi: 10.1016/j.applthermaleng.2019.114774
    [30] MEHRPOOYA M, BAHRAMIAN P, POURFAYAZ F, et al. Introducing and analysis of a hybrid molten carbonate fuel cell-supercritical carbon dioxide Brayton cycle system[J]. Sustainable Energy Technologies and Assessments, 2016, 18: 100-106. doi: 10.1016/j.seta.2016.10.003
    [31] MAHMOUDI S M S, GHAVIMI A R. Thermoeconomic analysis and multi objective optimization of a molten carbonate fuel cell-supercritical carbon dioxide-organic Rankine cycle integrated power system using liquefied natural gas as heat sink[J]. Applied Thermal Engineering, 2016, 107: 1219-1232. doi: 10.1016/j.applthermaleng.2016.07.003
    [32] WRIGHT S A, RADEL R F, VERNON M E, et al. Operation and analysis of a supercritical CO2 Brayton cycle: SAND2010-0171[R]. Albuquerque: Sandia National Laboroatories, 2010.
    [33] WRIGHT S A, CONBOY T M, PARMA E J. Summary of the Sandia supercritical CO2 development program[C]//Proceedings of the 3rd International Symposium on Supercritical CO2 Power Cycles, 2011: 1-16.
    [34] PASCH J, CONBOY T, FLEMING D, et al. Supercritical CO2 recompression Brayton cycle: Completed assembly description: SAND2012-9546[R]. Albuquerque: Sandia National Laboroatories, 2012.
    [35] CHIRANJEEV K, DOUGLAS S H, EDIP S. Development of high efficiency hot gas turbo-expander for optimized CSP supercritical CO2 power block operation[C]//Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, 2014: 1-11.
    [36] BIDKAR R A, MANN A, SINGH R, et al. Conceptual designs of 50 MW and 450 MW supercritical CO2 turbomachinery trains for power generation from coal. Part 1: Cycle and turbine[C]//Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycles, 2016: 1-18.
    [37] BIDKAR R A, MANN A, SINGH R, et al. Conceptual designs of 50 MW and 450 MW supercritical CO2 turbomachinery trains for power generation from coal. Part 2: Compressors[C]//Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycles, 2016: 1-18.
    [38] CLEMENTONI E M, COX T L, KING M A. Off-nominal component performance in a supercritical carbon dioxide Brayton cycle[J]. Journal of Engineering for Gas Turbine and Power, 2016, 138(1): 011703-2. doi: 10.1115/1.4031182
    [39] CLEMENTONI E M, COX T L, SPRAGUE C P. Startup and operation of a supercritical carbon fioxide Brayton cycle[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(7): V008T34A006.
    [40] CLEMENTONI E M, COX T L, KING M A, et al. Initial transient power operation of a supercritical carbon dioxide Brayton cycle with thermal-hydraulic control[C]//Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycle, 2016: 1-10.
    [41] CLEMENTONI E M, COX T L, KING M A, et al. Transient power operation of a supercritical carbon dioxide Brayton cycle[C]//Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference & Exposition. New York: ASME, 2017: V009T38A001.
    [42] HELD T J. Initial test results of a megawatt-class supercritical CO2 heat engine[C]//Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, 2014: 1-12.
    [43] CHA J E, LEE T H, EOH J H, et al. Development of a supercritical CO2 Brayton energy conversion system coupled with a sodium cooled fast reactor[J]. Nuclear Engineering and Technology, 2009, 41(8): 1025-1044. doi: 10.5516/NET.2009.41.8.1025
    [44] AHN Y, LEE J, KIM S G, et al. The design study of supercritical carbon dioxide integral experiment loop[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013: V008T34A003.
    [45] KIM S G, AHN Y, LEE J, et al. Numerical investigation of a centrifugal compressor for supercritical CO2 as a working fluid[C]//Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014: V03BT36A005.
    [46] LEE J, KIM S G, CHA J E, et al. Uncertainty on performance measurement of S-CO2 compressor operating near the critical point[C]//Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, 2014: 1-9.
    [47] CHO J, SHIN H, CHO J, et al. Development of the supercritical carbon dioxide power cycle experimental loop with a turbo-generator[C]//Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference & Exposition. New York: ASME, 2017: V009T38A018.
    [48] CHO J, SHIN H, RA H S, et al. Research on the development of a small-scale supercritical carbon dioxide power cycle experimental test loop[C]//Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycles, 2016: 1-12.
    [49] UTAMURA M, HASUIKE H, YAMAMOTO T. Demonstration test plan of closed cycle gas turbine with supercritical CO2 as working fluid[J]. Strojarstvo, 2010, 52(4): 459-465.
    [50] MIOL M D, BIANCHI G, HENRY G, et al. Design of a single-shaft compressor, generator, turbine for small-scale supercritical CO2 systems for waste heat to power conversion applications[C]//Proceedings of the 2nd European Supercritical CO2 Conference, 2018: 1-8.
    [51] STRAETZ M, MERTZ R, STRAFLINGER J. Experimental investigation on the heat transfer between condensing steam and SCO2 in a compact heat exchanger[C]//Proceedings of the 2nd European Supercritical CO2 Conference, 2018: 1-10.
    [52] HACKS A, VOJACEK A, DOHMEN H J, et al. Experimental investigation of the SCO2-HeRo compressor[C]//Proceedings of the 2nd European Supercritical CO2 Conference, 2018: 1-10.
    [53] WANG J, HUANG Y, ZANG J, et al. Research activities on supercritical carbon dioxide power conversion technology in China[C]//Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014: V03BT36A009.
    [54] LI H Z, ZHANG Y F, GAO W, et al. Preliminary design study on a multi-megawatts fossil-based supercritical CO2 recompression and reheat integral test facility[C]//Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycles, 2016: 1-17.
    [55] 姚李超. 超临界二氧化碳布雷顿循环气动热力分析方法及建模技术[D]. 北京: 北京航空航天大学, 2020.

    YAO L C. Methodology for thermaodynamic analysis and modeling of supercritical carbon dioxide Brayton cycles[D]. Beijing: Beihang University, 2020(in Chinese).
    [56] LEMMON E, HUBER M, MCLINDEN M. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1[S]. Gaithersburg: NIST, 2013.
    [57] SPAN W, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1 100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1558. doi: 10.1063/1.555991
    [58] ZHAO Q, MECHERI M, NEVEUX T, et al. Selection of a proper equation of state for the modeling of a supercritical CO2 Brayton cycle: Consequences on the process design[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6841-6853.
    [59] BALTADJIEV N D. An investigation of real gas effects in supercritical CO2 compressors[D]. Cambridge: MIT, 2012.
    [60] DYREBY J. Modeling the supercritical carbon dioxide Brayton cycle with recompression[D]. Madison: University of Wisconsin-Madison, 2014.
    [61] DYREBY J, KLEIN S, NELLIS G, et al. Design considerations for supercritical carbon dioxide Brayton cycles with recompression[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(10): 101701. doi: 10.1115/1.4027936
    [62] SARKAR J, BHATTACHARYYA S. Optimization of recompression S-CO2 power cycle with reheating[J]. Energy Conversion and Management, 2009, 50(8): 1939-1945. doi: 10.1016/j.enconman.2009.04.015
    [63] BEJAN A, TSATSARONIS G, MORAN M. Thermal design and optimization[M]. New York: John Wiley & Sons, 1996.
    [64] CHEN Y, WANG M, LISO V, et al. Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle[J]. Energy Conversion and Management, 2019, 186: 66-81. doi: 10.1016/j.enconman.2019.02.036
    [65] THANGANADAR D, ASFAND F, PATCHIGOLLA K. Thermal performance and economic analysis of supercritical carbon dioxide cycles in combined cycle power plant[J]. Applied Energy, 2019, 255: 113836. doi: 10.1016/j.apenergy.2019.113836
    [66] WANG X R, DAI Y P. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study[J]. Applied Energy, 2016, 170: 193-207. doi: 10.1016/j.apenergy.2016.02.112
    [67] RAO Z H, XUE T C, HUANG K X, et al. Multi-objective optimization of supercritical carbon dioxide recompression Brayton cycle considering printed circuit recuperator design[J]. Energy Conversion and Management, 2019, 201: 112094. doi: 10.1016/j.enconman.2019.112094
    [68] CARLSON M D, MIDDLETON B M, HO C K. Techno-economic comparison of solar-driven SCO2 Brayton cycles using component cost models baselined with vendor data and estimates[C]//Proceedings of the ASME 2017 11th International Conference on Energy Sustainability. New York: ASME, 2017: 1-7.
    [69] LI H, FAN G, CAO L Y, et al. A comprehensive investigation on the design and off-design performance of supercritical carbon dioxide power system based on the small-scale lead-cooled fast reactor[J]. Journal of Cleaner Production, 2020, 256: 120720. doi: 10.1016/j.jclepro.2020.120720
    [70] CHENG W L, HUANG W X, NIAN Y L. Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression[J]. Energy Conversion and Management, 2017, 150: 669-677. doi: 10.1016/j.enconman.2017.08.055
    [71] AKBARI A D, MAHMOUDI S. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle[J]. Energy, 2014, 78: 501-512. doi: 10.1016/j.energy.2014.10.037
    [72] WANG K, HE Y L. Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling[J]. Energy Conversion and Management, 2017, 135: 336-350. doi: 10.1016/j.enconman.2016.12.085
    [73] 姚李超, 邹正平, 付超, 等. 超临界二氧化碳再压缩布雷顿循环性能分析及优化设计方法研究[J]. 推进技术, 2022, 43(3): 200452. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202203009.htm

    YAO L C, ZOU Z P, FU C, et al. Performance analysis and optimization design method of supercritical carbon dioxide recompression Brayton cycle[J]. Journal of Propulsion Technology, 2022, 43(3): 200452(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202203009.htm
    [74] ZHANG H Z, ZHAO H, DENG Q H, et al. Aerothermodynamic design and numerical investigation of supercritical carbon dioxide turbine[C]//Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015: V009T36A007.
    [75] LIU Z Y, LUO W W, ZHAO Q J, et al. Preliminary design and model assessment of a supercritical CO2 compressor[J]. Applied Sciences, 2018, 8(4): 595. doi: 10.3390/app8040595
    [76] GKOUNTAS A A, STAMATELOS A M, KALFAS A. Recuperators investigation for high temperature supercritical carbon dioxide power generation cycles[J]. Applied Thermal Engineering, 2017, 125: 1094-1102. doi: 10.1016/j.applthermaleng.2017.07.092
    [77] KIM S, CHO Y, KIM M S, et al. Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators[J]. Energy, 2019, 147: 1216-1226. http://www.ingentaconnect.com/content/el/03605442/2018/00000147/00000001/art00085
    [78] SAEED M, KIM M H. Analysis of a recompression supercritical carbon dioxide power cycle with an integrated turbine design/optimization algorithm[J]. Energy, 2018, 165: 93-111. doi: 10.1016/j.energy.2018.09.058
    [79] SAEED M, KHATOON S, KIM M H. Design optimization and performance analysis of a supercritical carbon dioxide recompression Brayton cycle based on the detailed models of the cycle components[J]. Energy Conversion and Management, 2019, 196: 242-260. doi: 10.1016/j.enconman.2019.05.110
    [80] YAO L C, ZOU Z P. A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design[J]. Applied Energy, 2020, 276: 115354. doi: 10.1016/j.apenergy.2020.115354
    [81] DYREBY J J, KLEIN S A, NELLIS G F, et al. Modeling off-design and part-load performance of supercritical carbon dioxide power cycles[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013: V008T34A014.
    [82] JAHN I H, KEEP J A. On the off-design performance of supercritical carbon dioxide power cycles[C]//Proceedings of Shanghai 2017 Global Power and Propulsion Forum, 2017: 1-10.
    [83] BALTADJIEV N D, LETTIERI C, SPAKOVSZKY Z S. An investigation of real gas effects in supercritical CO2 centrifugal compressors[J]. Journal of Turbomachinery, 2015, 137(9): 091003. doi: 10.1115/1.4029616
    [84] CARSTENS N A. Control strategies for supercritical carbon dioxide power conversion systems[D]. Cambridge: MIT, 2007.
    [85] HOOPES K, SANCHEZ D, CRESPI F. A new method for modelling off-design performance of sCO2 heat exchangers without specifying detailed geometry[C]//Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycles, 2016: 1-14.
    [86] 朱玉铭, 姜玉雁, 梁世强, 等. 超临界二氧化碳布雷顿发电循环压气机实验研究进展[J]. 热力发电, 2020, 49(10): 11-20.

    ZHU Y M, JIANG Y Y, LIANG S Q, et al. Experimental research progress of supercritical carbon dioxide Brayton cycle compressor[J]. Thermal Power Generation, 2020, 49(10): 11-20(in Chinese).
    [87] NOALL J, NICHOLS B, PASCH J. Achievable efficiency and stability of supercritical CO2 compression systems[C]//Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, 2014: 1-10.
    [88] UTAMURA M, HASUIKE H, OGAWA K, et al. Demonstration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment[C]//Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2012: 155.
    [89] ARITOMI M, ISHIZUKA T, MUTO Y, et al. Performance test results of the supercritical CO2 compressor for a new gas turbine generating system[C]//Proceedings of the 18th International Conference on Nuclear Engineering. New York: ASME, 2010: 43-52.
    [90] XU P C, ZOU Z P, XUAN L M. A hybrid performance prediction method for centrifugal compressors based on single-zone and two-zone models[J]. Aerospace Science and Technology, 2021, 108: 106358. doi: 10.1016/j.ast.2020.106358
    [91] AUNGIER R H. Mean streamline aerodynamic performance analysis of centrifugal compressors[J]. Journal of Turbomachinery, 1995, 117(3): 360. doi: 10.1115/1.2835669
    [92] OH H W, YOON E S, CHUNG M K. An optimum set of loss models for performance prediction of centrifugal compressors[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1997, 211(4): 331-338. doi: 10.1243/0957650971537231
    [93] JAPIKSE D. Assessment of single-and two-zone modeling of centrifugal compressors, studies in component performance: Part 3[C]//Proceedings of the ASME Turbo Expo 1985: Power for Land, Sea, and Air. New York: ASME, 1985: V001T03A023.
    [94] JAPIKSE D. Centrifugal compressor design and performance[M]. White River Junction: Concepts NREC, 1996.
    [95] 吴字博. 向心涡轮非设计点低维性能预测和三维造型方法研究[D]. 北京: 北京航空航天大学, 2021.

    WU Z B. Research on performance prediction of radial turbine and aerodynamic design of turbine blades[D]. Beijing: Beihang University, 2021(in Chinese).
    [96] 王志强. SCO2再压缩循环发电系统再压缩压气机设计技术研究[D]. 北京: 北京航空航天大学, 2020.

    WANG Z Q. Research on recompression compressor design technology for supercritical carbon dioxide recompression cycle power generation system[D]. Beijing: Beihang University, 2020(in Chinese).
    [97] 应祺煜. 超临界二氧化碳轴流涡轮旋涡流动机理与控制方法研究[D]. 北京: 清华大学, 2022.

    YING Q Y. Vortex flow mechanism investigations and flow control method study in a supercritical carbon dioxide axial turbine[D]. Beijing: Tsinghua University, 2022(in Chinese).
    [98] ZOU Z P, DING C. A new similarity method for turbomachinery with different working media[J]. Applied Thermal Engineering, 2018, 133: 170-178. doi: 10.1016/j.applthermaleng.2018.01.034
    [99] CHEN Y M, ZOU Z P, FU C. A study on the similarity method for helium compressors[J]. Aerospace Science and Technology, 2019, 90: 115-126. doi: 10.1016/j.ast.2019.04.026
    [100] XU P C, ZOU Z P, YAO L C. A unified performance conversion method for similar compressors working with different gases based on polytropic analysis and deep-learning improvement[J]. Energy Conversion and Management, 2021, 247: 114747. doi: 10.1016/j.enconman.2021.114747
    [101] WRIGHT S, PICKARD P, VERNON M, et al. Description and test results from a supercritical CO2 Brayton cycle development program: AIAA 2009-4607[R]. Reston: AIAA, 2009.
    [102] CONBOY T, WRIGHT S, PASCH J, et al. Performance characteristics of an operating supercritical CO2 Brayton cycle[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 111703. doi: 10.1115/1.4007199
    [103] CHA J E, BAE S W, LEE J, et al. Operation results of a closed supercritical CO2 simple Brayton cycle[C]//Proceedings of the 5th International Symposium on Supercritical CO2 Power Cycles, 2016: 1-10.
    [104] YASUYOSHI K, TAKESHI N, YOSHIO Y. A carbon dioxide partial condensation direct cycle for advanced gas cooled fast and thermal reactors[C]//Proceedings of the Global 2001 International Conference on: "Back-End of the Fuel Cycle: From Research to Solutions", 2001: 1-8.
    [105] KATO Y, NITAWAKI T, MUTO Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering and Design, 2004, 230(1-3): 195-207. doi: 10.1016/j.nucengdes.2003.12.002
    [106] MECHERI M, MOULLEC Y L. Supercritical CO2 Brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771. doi: 10.1016/j.energy.2016.02.111
    [107] LI Q, FLAMANT G, YUAN X, et al. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4855-4875. doi: 10.1016/j.rser.2011.07.066
    [108] ZHANG H Z, CHENG K Y, HUAI X L, et al. Experimental and numerical study of an 80-kW zigzag printed circuit heat exchanger for supercritical CO2 Brayton cycle[J]. Journal of Thermal Science, 2021, 30(4): 1289-1301. doi: 10.1007/s11630-021-1490-8
    [109] CAI H F, JIANG Y Y, WANG T, et al. Experimental investigation on convective heat transfer and pressure drop of supercritical CO2 and water in microtube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120443. doi: 10.1016/j.ijheatmasstransfer.2020.120443
    [110] SULLIVAN S D, FARIAS J, KESSELI J, et al. Mechanical design and validation testing for a high-performance supercritical carbon dioxide heat exchanger[C]//Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017: V009T38A012.
    [111] RASOULI E, DAVIS C A, SUBEDI S, et al. Design and performance characterization of an additively manufactured primary heat exchanger for sCO2 waste heat recovery cycles[C]//Proceedings of the 6th International Symposium on Supercritical CO2 Power Cycles, 2018: 1-12.
    [112] HAO J H, GE Z H, CHEN Q, et al. The coupled process-component modeling and optimization for heat exchanger of supercritical CO2 with property variation based on heat current method[J]. Applied Thermal Engineering, 2020, 168: 114833. doi: 10.1016/j.applthermaleng.2019.114833
    [113] KWON J S, SON S, HEO J Y, et al. Compact heat exchangers for supercritical CO2 power cycle application[J]. Energy Conversion and Management, 2020, 209: 112666. doi: 10.1016/j.enconman.2020.112666
    [114] CABEZA L F, GRACIA A D, FERNÁNDEZ A I, et al. Supercritical CO2 as heat transfer fluid: A review[J]. Applied Thermal Engineering, 2017, 125: 799-810. doi: 10.1016/j.applthermaleng.2017.07.049
    [115] EHSAN M M, GUAN Z Q, KLIMENKO A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. doi: 10.1016/j.rser.2018.04.106
    [116] 李辉, 汝卓霖, 邹正平, 等. 微小尺度通道内超临界甲烷传热特征研究[J]. 南京航空航天大学学报, 2021, 53(4): 513-520. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK202104003.htm

    LI H, RU Z L, ZOU Z P, et al. Investigation on heat transfer characteristic of supercritical methane in a microtube[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 513-520(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK202104003.htm
    [117] DUFFEY R B, PIORO I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. doi: 10.1016/j.nucengdes.2004.11.011
    [118] JIANG P X, SHI R S, XU Y J, et al. Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube[J]. The Journal of Supercritical Fluids, 2006, 38(3): 339-346. doi: 10.1016/j.supflu.2005.12.004
    [119] ZHANG J Q, ZOU Z P, WANG Y F. Large-eddy simulation on the aerodynamic and thermal characteristics in a micropipe of the hypersonic engine precooler[J]. Micromachines, 2022, 13(4): 637. doi: 10.3390/mi13040637
    [120] JIANG P X, ZHANG Y, XU Y J, et al. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. International Journal of Thermal Sciences, 2008, 47(8): 998-1011. doi: 10.1016/j.ijthermalsci.2007.08.003
    [121] NARASIMHA R, SREENIVASAN K R. Relaminarization of fluid flows[J]. Advances in Applied Mechanics, 1979, 19: 221-309.
    [122] BAE J H, YOO J Y. Direct numerical simulation of turbulent supercritical flows with heat transfer[J]. Physics of Fluids, 2005, 17(10): 105104. doi: 10.1063/1.2047588
    [123] ZHANG S J, XU X X, LIU C, et al. A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion[J]. Applied Energy, 2020, 269: 114962. doi: 10.1016/j.apenergy.2020.114962
    [124] KURGANOV V A, KAPTIL'NY A G. Velocity and enthalpy fields and eddy diffusivities in a heated supercritical fluid flow[J]. Experimental Thermal and Fluid Science, 1992, 5(4): 465-478. doi: 10.1016/0894-1777(92)90033-2
    [125] LI H, LIU H X, ZOU Z P. Experimental study and performance analysis of high-performance micro-channel heat exchanger for hypersonic precooled aero-engine[J]. Applied Thermal Engineering, 2021, 182: 116108. doi: 10.1016/j.applthermaleng.2020.116108
    [126] YOON S H, NO H C, KANG G B. Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs[J]. Nuclear Engineering and Design, 2014, 270: 334-343. doi: 10.1016/j.nucengdes.2014.01.006
    [127] KIM I H, NO H C, LEE J I, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations[J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408. doi: 10.1016/j.nucengdes.2009.07.005
    [128] JIANG Y, LIESE E, ZITNEY S E, et al. Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles[J]. Applied Energy, 2018, 231: 1019-1032. doi: 10.1016/j.apenergy.2018.09.193
    [129] GUO J F. Design analysis of supercritical carbon dioxide recuperator[J]. Applied Energy, 2016, 164: 21-27. doi: 10.1016/j.apenergy.2015.11.049
    [130] KE H B, XIAO Q, CAO Y P, et al. Simulation of the printed circuit heat exchanger for S-CO2 by segmented methods[J]. Energy Procedia, 2017, 142: 4098-4103. doi: 10.1016/j.egypro.2017.12.331
    [131] 李欢. 高超声速强预冷发动机微小尺度换热器流动与换热实验研究[D]. 北京: 北京航空航天大学, 2021.

    LI H. Experimental investigation on flow and heat transfer for micro-scale heat exchangers of hypersonic precooled engines[D]. Beijing: Beihang University, 2021(in Chinese).
    [132] ZHAO Z C, CHEN X D, LI S L, et al. Methodology of design and analysis on the thermal hydraulic performance of the cross-flow printed circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119756. doi: 10.1016/j.ijheatmasstransfer.2020.119756
    [133] SON S, LEE Y, LEE J I. Development of an advanced printed circuit heat exchanger analysis code for realistic flow path configurations near header regions[J]. International Journal of Heat and Mass Transfer, 2015, 89: 242-250. doi: 10.1016/j.ijheatmasstransfer.2015.05.012
    [134] LI H, ZOU Z P, LIU Y M. A refined design method for precoolers with consideration of multi-parameter variations based on low-dimensional analysis[J]. Chinese Journal of Aeronautics, 2022, 35(3): 329-344. doi: 10.1016/j.cja.2021.08.031
    [135] JIANG Y, LIESE E, ZITNEY S E, et al. Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle[J]. Applied Energy, 2018, 216: 634-648. doi: 10.1016/j.apenergy.2018.02.082
    [136] CHAI L, TASSOU S A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles[J]. Thermal Science and Engineering Progress, 2020, 18: 100543. doi: 10.1016/j.tsep.2020.100543
    [137] LIU S H, HUANG Y P, WANG J F, et al. Experimental study on transitional flow in straight channels of printed circuit heat exchanger[J]. Applied Thermal Engineering, 2020, 181: 115950. doi: 10.1016/j.applthermaleng.2020.115950
    [138] ANEESH A, SHARMA A, SRIVASTAVA A, et al. Effects of wavy channel configurations on thermal-hydraulic characteristics of printed circuit heat exchanger (PCHE)[J]. International Journal of Heat and Mass Transfer, 2018, 118: 304-315. doi: 10.1016/j.ijheatmasstransfer.2017.10.111
    [139] TSUZUKI N, KATO Y, ISHIDUKA T. High performance printed circuit heat exchanger[J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. doi: 10.1016/j.applthermaleng.2006.07.007
    [140] KIM D E, KIM M H, CHA J E, et al. Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model[J]. Nuclear Engineering and Design, 2008, 238(12): 3269-3276. doi: 10.1016/j.nucengdes.2008.08.002
    [141] ZHANG K, LI M J, LIU H, et al. A general and rapid method to evaluate the effect of flow maldistribution on the performance of heat exchangers[J]. International Journal of Thermal Sciences, 2021, 170: 107152. doi: 10.1016/j.ijthermalsci.2021.107152
    [142] HAIDER P, FREKO P, ACHER T, et al. Influence of inlet configuration and distributor geometry on the performance of cryogenic plate-fin heat exchangers[J]. Applied Thermal Engineering, 2021, 195: 117197. doi: 10.1016/j.applthermaleng.2021.117197
    [143] PIDAPARTI S R, ANDERSON M H, RANJAN D. Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO2 power cycles[J]. Experimental Thermal and Fluid Science, 2019, 106: 119-129. doi: 10.1016/j.expthermflusci.2019.04.025
    [144] CHU W X, BENNETT K, CHENG J, et al. Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger[J]. Applied Thermal Engineering, 2019, 146: 805-814. doi: 10.1016/j.applthermaleng.2018.10.027
    [145] SIDDIQUI O K, ZUBAIR S M. Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 969-1002. doi: 10.1016/j.rser.2017.01.074
    [146] KOO G W, LEE S M, KIM K Y. Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling[J]. Applied Thermal Engineering, 2014, 72(1): 90-96. doi: 10.1016/j.applthermaleng.2013.12.009
    [147] MA T, ZHANG P, SHI H N, et al. Prediction of flow maldistribution in printed circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119560. doi: 10.1016/j.ijheatmasstransfer.2020.119560
    [148] MENG B, WAN M, ZHAO R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathingpropulsion: A review[J]. Chinese Journal of Aeronautics, 2021, 34(2): 79-103. doi: 10.1016/j.cja.2020.03.028
    [149] MYLAVARAPU S K, SUN X D, CHRISTENSEN R N, et al. Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers[J]. Nuclear Engineering and Design, 2012, 249: 49-56. doi: 10.1016/j.nucengdes.2011.08.043
    [150] MA Y, XIE G N, HOOMAN K. Review of printed circuit heat exchangers and its applications in solar thermal energy[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111933. doi: 10.1016/j.rser.2021.111933
    [151] OH C H, KIM E S, PATTERSON M. Design option of heat exchanger for the next generation nuclear plant[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 032903. doi: 10.1115/1.3126780
    [152] KAUR K, SINGH P. State-of-the-art in heat exchanger additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121600. doi: 10.1016/j.ijheatmasstransfer.2021.121600
    [153] DING M, LIU J, CHENG W L, et al. An adaptive flow path regenerator used in supercritical carbon dioxide Brayton cycle[J]. Applied Thermal Engineering, 2018, 138: 513-522. doi: 10.1016/j.applthermaleng.2018.04.055
    [154] CARLSON M D, KRUIZENGA A K, SCHALANSKY C, et al. Sandia progress on advanced heat exchangers for SCO2 Brayton cycles[C]//Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, 2014: 1-10.
    [155] MOISSEYTSEV A, SIENICKI J J, CHO D H, et al. Comparison of heat exchanger modeling with data from CO2-to-CO2 printed circuit heat exchanger performance tests[C]//Proceedings of the International Congress on Advances in Nuclear Power Plants, 2010: 459-468.
    [156] NIKITIN K, KATO Y, NGO L. Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop[J]. International Journal of Refrigeration, 2006, 29(5): 807-814. doi: 10.1016/j.ijrefrig.2005.11.005
    [157] BAIK S, KIM S G, LEE J, et al. Study on CO2-water printed circuit heat exchanger performance operating under various CO2 phases for S-CO2 power cycle application[J]. Applied Thermal Engineering, 2017, 113: 1536-1546. doi: 10.1016/j.applthermaleng.2016.11.132
    [158] ZHOU J Z, CHENG K Y, ZHANG H Z, et al. Test platform and experimental test on 100 kW class printed circuit heat exchanger for supercritical CO2 Brayton cycle[J]. International Journal of Heat and Mass Transfer, 2020, 148: 118540. doi: 10.1016/j.ijheatmasstransfer.2019.118540
    [159] CHU W X, LI X H, MA T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channel[J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194. doi: 10.1016/j.ijheatmasstransfer.2017.05.059
    [160] KIM I H, NO H C. Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations[J]. Applied Thermal Engineering, 2011, 31(17-18): 4064-4073. doi: 10.1016/j.applthermaleng.2011.08.012
    [161] KIM I H, NO H C. Thermal-hydraulic physical models for a printed circuit heat exchanger covering He, He-CO2 mixture, and water fluids using experimental data and CFD[J]. Experimental Thermal and Fluid Science, 2013, 48: 213-221. doi: 10.1016/j.expthermflusci.2013.03.003
    [162] NGO T L, KATO Y, NIKITIN K, et al. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles[J]. Experimental Thermal and Fluid Science, 2007, 32(2): 560-570. doi: 10.1016/j.expthermflusci.2007.06.006
    [163] LIU S H, HUANG Y P, WANG J F, et al. Experimental study of thermal-hydraulic performance of a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120109. doi: 10.1016/j.ijheatmasstransfer.2020.120109
    [164] ZHAO J W, ZHAO R, NIAN Y L, et al. Experimental study of supercritical CO2 in a vertical adaptive flow path heat exchanger[J]. Applied Thermal Engineering, 2021, 188: 116597. doi: 10.1016/j.applthermaleng.2021.116597
    [165] WANG X, WANG R, BIAN X Y, et al. Review of dynamic performance and control strategy of supercritical CO2 Brayton cycle[J]. Energy and AI, 2021, 5: 100078. doi: 10.1016/j.egyai.2021.100078
    [166] LIESE E, ALBRIGHT J, ZITNSY S A. Start up, shutdown and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle[J]. Applied Energy, 2020, 277: 115628. doi: 10.1016/j.apenergy.2020.115628
    [167] MOISSEYTSEV A, SIENICKI J J. Investigation of plant control strategies for the supercritical CO2 Brayton cycle for a sodium-cooled fast reactor using the plant dynamics code: ANL-GenIV-147[R]. Argonne: Argonne National Laboratory, 2010.
    [168] LUU M T, MILANI D, MCNAYUGHTON R, et al. Dynamic modeling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle[J]. Applied Energy, 2017, 199: 247-263. doi: 10.1016/j.apenergy.2017.04.073
    [169] MILANI D, LUU M T, MCNAYUGHTON R, et al. A comparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles: Dynamic modelling and control strategies[J]. The Journal of Supercritical Fluids, 2017, 120: 113-124. doi: 10.1016/j.supflu.2016.09.009
    [170] OLUMAYEGUN O, WANG M. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249: 89-102. doi: 10.1016/j.fuel.2019.03.078
    [171] LUU M T, MILANI D, MCNAYUGHTON R, et al. Advanced control strategies for dynamic operation of a solar-assisted recompression supercritical CO2 Brayton cycle[J]. Applied Thermal Engineering, 2018, 136: 682-700. doi: 10.1016/j.applthermaleng.2018.03.021
    [172] MATTEO M, GIUSEPPE B, SAVVAS A T. Transient analysis and control of a heat t power conversion unit based on a simple regenerative supercritical CO2 Joule-Brayton cycle[J]. Applied Thermal Engineering, 2021, 183: 116214. doi: 10.1016/j.applthermaleng.2020.116214
    [173] DU X, HU J S, XIA G L. Operation characteristic of supercritical carbon dioxide-cooled reactor system under coordination control scheme[J]. International Journal of Advanced Robotic Systems, 2020, 17(3): 172988142093383. doi: 10.1177/1729881420933833
    [174] CONBOY T, PASCH J, FLEMING D. Control of a supercritical CO2 recompression Brayton cycle demonstration loop[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): 111701. doi: 10.1115/1.4025127
    [175] GAO C T, WU P, LIU W H, et al. Development of a bypass control strategy for supercritical CO2 Brayton cycle cooled reactor system under load-following operation[J]. Annals of Nuclear Energy, 2021, 151: 107917. doi: 10.1016/j.anucene.2020.107917
    [176] MOISSEYTSEV A, SIENICKI J. Recent development in S-CO2 cycle dynamic modeling and analysis at ANL[C]//Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, 2014: 1-21.
    [177] VIGNAROOBAN K, XU X H, WANG K, et al. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems[J]. Applied Energy, 2015, 159: 206-213. doi: 10.1016/j.apenergy.2015.08.131
    [178] WU Y T, REN N, WANG T, et al. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage thermal power plant[J]. Solar Energy, 2011, 85(9): 1957-1966. doi: 10.1016/j.solener.2011.05.004
    [179] HO C K, IVERSON B D. Review of high-temperature central receiver designs for concentrating solar power[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 835-846. doi: 10.1016/j.rser.2013.08.099
    [180] KELLY B. Advanced thermal storage for central receivers with supercritical coolants: DE-FG36-08GO18149[R]. Lakewood: Abengoa Solar Inc, 2010.
    [181] BINDRA H, BUENO P, MORRIS J F. Sliding flow method for exergetically efficient packed bed thermal storage[J]. Applied Thermal Engineering, 2014, 64(1-2): 201-208. doi: 10.1016/j.applthermaleng.2013.12.028
    [182] ZHAO W H, FRANCE D M, YU W H, et al. Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar plant[J]. Renewable Energy, 2014, 69: 134-146. doi: 10.1016/j.renene.2014.03.031
    [183] STEKLI J, IRWIN L, PITCHUMANI R. Technical challenges and opportunities for concentrating solar power with thermal energy storage[J]. Journal of Thermal Science and Engineering Applications, 2013, 5: 021011. doi: 10.1115/1.4024143
    [184] CONBOY T. An approach to turbomachinery for supercritical Brayton space power cycles[C]//Proceedings of Nuclear and Emerging Technologies for Space 2013, 2013: 1-8.
  • 加载中
图(36) / 表(6)
计量
  • 文章访问数:  1914
  • HTML全文浏览量:  387
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-05-17

目录

    /

    返回文章
    返回
    常见问答