留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态视觉传感器的无人机目标检测与避障

蔡志浩 陈文军 赵江 王英勋

蔡志浩,陈文军,赵江,等. 基于动态视觉传感器的无人机目标检测与避障[J]. 北京航空航天大学学报,2024,50(1):144-153 doi: 10.13700/j.bh.1001-5965.2022.0201
引用本文: 蔡志浩,陈文军,赵江,等. 基于动态视觉传感器的无人机目标检测与避障[J]. 北京航空航天大学学报,2024,50(1):144-153 doi: 10.13700/j.bh.1001-5965.2022.0201
CAI Z H,CHEN W J,ZHAO J,et al. Object detection and obstacle avoidance based on dynamic vision sensor for UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):144-153 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0201
Citation: CAI Z H,CHEN W J,ZHAO J,et al. Object detection and obstacle avoidance based on dynamic vision sensor for UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):144-153 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0201

基于动态视觉传感器的无人机目标检测与避障

doi: 10.13700/j.bh.1001-5965.2022.0201
详细信息
    作者简介:

    蔡志浩等:基于动态视觉传感器的无人机目标检测与避障 9

    通讯作者:

    E-mail:wangyx@buaa.edu.cn

  • 中图分类号: V249.3;TP249

Object detection and obstacle avoidance based on dynamic vision sensor for UAV

More Information
  • 摘要:

    针对无人机在动态环境中感知动态目标与躲避高速动态障碍物,提出了基于动态视觉传感器的目标检测与避障算法。设计了滤波方法和运动补偿算法,滤除事件流中背景噪声、热点噪声及由相机自身运动产生的冗余事件;设计了一种融合事件图像和RGB图像的动态目标融合检测算法,保证检测的可靠性。根据检测结果对目标运动轨迹进行估计,结合障碍物运动特点和无人机动力学约束改进速度障碍法躲避动态障碍物。大量仿真试验、手持试验及飞行试验验证了所提算法的可行性。

     

  • 图 1  任务场景

    Figure 1.  Task scenario

    图 2  本文算法框架

    Figure 2.  Framework of proposed algorithm

    图 3  融合检测算法

    Figure 3.  Fusion detection algorithm

    图 4  RGB图像和事件图像时间线

    Figure 4.  Timeline of RGB frame-image and event-image

    图 5  融合测距原理

    Figure 5.  Principle of fusion ranging

    图 6  动态避障原理

    Figure 6.  Dynamic obstacle avoidance

    图 7  无人机动力学约束的避障模型

    Figure 7.  Obstacle avoidance model of UAV with dynamic constraints

    图 8  事件滤波时空图

    Figure 8.  Space-time diagram of event-filter

    图 9  运动补偿效果

    Figure 9.  Result of motion compensation

    图 10  融合检测结果

    Figure 10.  Result of fusion detection

    图 11  融合测距试验

    Figure 11.  Fusion ranging test

    图 12  测距结果对比

    Figure 12.  Comparison of ranging results

    图 13  9.6 $ {\mathrm{m}}/{\mathrm{s}} $动态障碍物仿真结果

    Figure 13.  simulation results of 9.6 m/s dynamic obstacle

    图 14  3D 避障仿真

    Figure 14.  3D obstacle avoidance simulation

    图 15  试验硬件平台

    Figure 15.  Test hardware platform

    图 16  实际飞行试验

    Figure 16.  Real world experience

    图 17  无人机速度变化曲线

    Figure 17.  UAV velocity change curve

    图 18  无人机滚转角变化曲线

    Figure 18.  UAV roll angle change curve

    表  1  检测结果对比

    Table  1.   Comparison of detection results

    数据来源 检测帧数 检测率/%
    RGB图像 293 67.9
    事件图像 376 87.2
    融合结果 415 96.3
    下载: 导出CSV

    表  2  测距结果对比

    Table  2.   Comparison of ranging results m

    方法类型 最大误差 平均误差
    PnP 1.523 3 0.619 3
    相机模型测距 0.826 1 0.351 3
    融合测距 0.477 0 0.136 8
    下载: 导出CSV

    表  3  避障仿真参数

    Table  3.   Obstacle avoidance simulation parameter

    参数 数值
    无人机质量$ {m_A} $/kg 1.2
    无人机推重比$ \tau $ 6
    无人机安全半径$ {R_A} $/cm 30
    无人机最大速度$ \left| {{{\boldsymbol{V}}_{A\max }}} \right| $/(m·s−1) 5
    无人机视角$ \alpha $/(°) 120
    无人机最大检测距离$ s $/m 4
    障碍物半径$ {R_B} $/cm 12.3
    障碍物最大速度$ \left| {{{\boldsymbol{V}}_{B\max }}} \right| $/(m·s−1) 12
    下载: 导出CSV

    表  4  避障仿真结果对比

    Table  4.   Comparison of obstacle avoidance simulation results

    障碍物速度/(m·s−1) 飞行时间/ms
    文献[12]方法 本文方法
    2.4 3274 3082
    9.6 3956 3086
    下载: 导出CSV
  • [1] 王亭亭, 蔡志浩, 王英勋. 无人机室内视觉/惯导组合导航方法[J]. 北京航空航天大学学报, 2018, 44(1): 176-186. doi: 10.13700/j.bh.1001-5965.2016.0965

    WANG T T, CAI Z H, WANG Y X. Integrated indoor vision/inertial navigation method of UAVs in indoor environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 176-186(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0965
    [2] FALANGA D, KIM S, SCARAMUZZA D. How fast is too fast? The role of perception latency in high-speed sense and avoid[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1884-1891. doi: 10.1109/LRA.2019.2898117
    [3] DELBRUCK T. Neuromorophic vision sensing and processing[C]//Proceedings of the 46th European Solid State Device Research Conference. Piscataway: IEEE Press, 2016: 7-14.
    [4] BRANDLI C, BERNER R, YANG M H, et al. A 240 × 180 130 dB 3 µs latency global shutter spatiotemporal vision sensor[J]. IEEE Journal of Solid-State Circuits, 2014, 49(10): 2333-2341. doi: 10.1109/JSSC.2014.2342715
    [5] GALLEGO G, DELBRÜCK T, ORCHARD G M, et al. Event-based vision: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(1): 154-180.
    [6] KHODAMORADI A, KASTNER R. O( N)-space spatiotemporal filter for reducing noise in neuromorphic vision sensors[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(1): 15-23.
    [7] FENG Y, LV H Y, LIU H L, et al. Event density based denoising method for dynamic vision sensor[J]. Applied Sciences, 2020, 10(6): 2024. doi: 10.3390/app10062024
    [8] 闫昌达, 王霞, 左一凡, 等. 基于事件相机的可视化及降噪算法[J]. 北京航空航天大学学报, 2021, 47(2): 342-350. doi: 10.13700/j.bh.1001-5965.2020.0192

    YAN C D, WANG X, ZUO Y F, et al. Visualization and noise reduction algorithm based on event camera[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 342-350(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0192
    [9] MUEGGLER E, FORSTER C, BAUMLI N, et al. Lifetime estimation of events from dynamic vision sensors[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2015: 4874-4881.
    [10] MITROKHIN A, FERMÜLLER C, PARAMESHWARA C, et al. Event-based moving object detection and tracking[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2019: 1-9.
    [11] HE B T, LI H J, WU S Y, et al. FAST-dynamic-vision: Detection and tracking dynamic objects with event and depth sensing[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2021: 3071-3078.
    [12] FALANGA D, KLEBER K, SCARAMUZZA D. Dynamic obstacle avoidance for quadrotors with event cameras[J]. Science Robotics, 2020, 5(40): 1-14. doi: 10.1126/scirobotics.aaz9712
    [13] SANKET N J, PARAMESHWARA C M, SINGH C D, et al. EVDodgeNet: Deep dynamic obstacle dodging with event cameras[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2020: 10651-10657.
    [14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [15] JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422. doi: 10.1109/JPROC.2003.823141
    [16] MOSHTAGH N. Minimum volume enclosing ellipsoids[J]. Convex Optimization, 2005, 111: 1-9.
    [17] VAN DEN BERG J, LIN M C, MANOCHA D. Reciprocal velocity obstacles for real-time multi-agent navigation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2008: 1928-1935.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  64
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 录用日期:  2022-05-06
  • 网络出版日期:  2022-05-26
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答