留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

板翅式换热器传递函数动态模型及参数确定方法

梁兴壮 黄志远 艾凤明 袁振伟 汪箭

梁兴壮,黄志远,艾凤明,等. 板翅式换热器传递函数动态模型及参数确定方法[J]. 北京航空航天大学学报,2024,50(1):154-162 doi: 10.13700/j.bh.1001-5965.2022.0202
引用本文: 梁兴壮,黄志远,艾凤明,等. 板翅式换热器传递函数动态模型及参数确定方法[J]. 北京航空航天大学学报,2024,50(1):154-162 doi: 10.13700/j.bh.1001-5965.2022.0202
LIANG X Z,HUANG Z Y,AI F M,et al. Dynamic model by transfer function and parameter determination method of plate fin heat exchanger[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):154-162 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0202
Citation: LIANG X Z,HUANG Z Y,AI F M,et al. Dynamic model by transfer function and parameter determination method of plate fin heat exchanger[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):154-162 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0202

板翅式换热器传递函数动态模型及参数确定方法

doi: 10.13700/j.bh.1001-5965.2022.0202
详细信息
    通讯作者:

    E-mail:liangxingzhuang@126.com

  • 中图分类号: V245.3

Dynamic model by transfer function and parameter determination method of plate fin heat exchanger

More Information
  • 摘要:

    飞机综合环控/热管理系统迫切需要建立快捷高效的换热器动态仿真模型,以满足先进控制系统设计需求。基于此,针对板翅式换热器动态模型,提出一种包含2个延迟环节和4个一阶惯性环节的传递函数矩阵形式,并从换热器机理模型出发,利用拉普拉斯变换推导模型中4个时间常数的计算公式,提出基于换热器效率的传热热阻计算关系式的辨识方法,解决了主要模型参数设置难题。以板翅式换热器为研究对象,在Simulink仿真平台搭建其传递函数动态模型,并与AMESim仿真平台搭建的机理模型进行对比分析,结果显示:2种模型所得空气和冷却水出口温度分别随入口温度和质量流量阶跃变化的动态响应曲线吻合很好,其中,4种工况空气和冷却水出口温度最大稳态偏差分别为0.034 ℃和0.029 ℃,当冷却水入口质量流量阶跃变化时,空气出口温度动态响应相对偏差最大,为9.27%,当空气入口质量流量阶跃变化时,冷却水出口温度动态响应相对偏差最大,为7.03%。

     

  • 图 1  换热器单个模块内流动传热过程示意图

    Figure 1.  Schematic diagram of flow and heat transfer process in a single module of a heat exchanger

    图 2  换热器简化动态仿真模型

    Figure 2.  Simplified dynamic simulation model of heat exchanger

    图 3  时间常数推导过程

    Figure 3.  Derivation process of time constant

    图 4  换热器模型参数计算流程

    Figure 4.  Calculation process of heat exchanger model parameters

    图 5  传热热阻计算过程示意图

    Figure 5.  Schematic diagram of thermal resistance calculation process

    图 6  换热器五节点AMESim标准机理仿真模型

    Figure 6.  Five-node standard mechanism model of heat exchanger in AMESim software

    图 7  换热器效率曲面

    Figure 7.  Efficiency map of heat exchanger

    图 8  非样本工况下传热热阻拟合结果与标准对比

    Figure 8.  Comparison of identification result of heat exchange resitance at non sample points

    图 9  换热器Simulink简化动态仿真模型

    Figure 9.  Simplified dynamic simulation module of heat exchanger in Simulink software

    图 10  2种仿真模型所得出口温度动态响应曲线

    Figure 10.  Dynamic response curves of outlet temperature obtained by two simulation models

    表  1  换热器基本结构参数

    Table  1.   Basic parameters of heat exchanger

    冷/热边 翅片间距/mm 翅片高度/mm 翅片厚度/mm 层数 隔板厚度/mm 面板厚度/mm 封条宽度/mm
    热边 1.3 2.5 0.15 10 0.6 2 6
    冷边 1.3 2.5 0.15 11 0.6 2 6
    下载: 导出CSV

    表  2  AMESim换热器仿真模块参数设置

    Table  2.   Parameter settings of heat exchanger module in AMESim software

    模块 参数 数值
    热侧流体流动
    传热模块
    流动系数 0.6
    自由流动横截面积/mm2 6 000
    换热特征长度/mm 1.5
    对流换热面积/m2 9.3046×1/5
    翅片面积与总面积之比 0.975 0
    翅片效率 0.962 8
    换热器体积容积/ L 3.7×1/5
    对流传热计算方式 Colburn j因子
    j因子表达式j=f(Re) 0.1447Re−0.368
    芯体模块 初始温度/℃ 20
    流动形式 逆流
    芯体质量/kg 9.3069×1/5
    冷侧流体流动
    传热模块
    流速计算 等效为孔板
    自由流横截面积/mm2 6600
    自由流动管径/mm 1.5
    最大流动系数 0.99
    临界雷诺数 $1000 \sqrt{2} $
    换热器特征长度/mm 1.5
    对流换热面积/m2 10.2351×1/5
    换热器内部容积/L 4.1×1/5
    对流传热计算方式 Colburn j因子
    j因子表达式j= f(Re) 0.4722Re−0.536
    下载: 导出CSV

    表  3  仿真工况参数

    Table  3.   Simulation condition parameters

    工况 质量流量/(kg·s−1) 入口温度/℃
    空气侧 冷却水侧 空气侧 冷却水侧
    平衡 1.5 0.8 70 10
    工况1 阶跃至1.65 0.8 70 10
    工况2 1.5 阶跃至0.88 70 10
    工况3 1.5 0.8 阶跃至77 10
    工况4 1.5 0.8 70 阶跃至14
    下载: 导出CSV

    表  4  2种仿真模型所得出口温度对比

    Table  4.   Comparison of outlet temperature obtained by two simulation models

    工况 标准模型阶跃变化/℃ 稳态偏差/℃ 动态最大偏差/% 动态相对偏差/%
    空气出口 冷却水出口 空气出口 冷却水出口 空气出口 冷却水出口 空气出口 冷却水出口
    工况1 0.561 2.360 0.023 0.027 0.049 0.270 4.91 7.03
    工况2 0.269 2.288 0.034 0.026 0.034 0.101 9.27 2.13
    工况3 0.176 3.080 0.020 0.029 0.039 0.310 8.56 4.11
    工况4 3.882 2.264 0.026 0.012 0.997 0.197 4.08 2.34
    下载: 导出CSV
  • [1] WANG J X, LI Y Z, LIU X D, et al. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China[J]. Chinese Journal of Aeronautics, 2021, 34(2): 1-27. doi: 10.1016/j.cja.2020.06.021
    [2] DEPPEN T O, HEY J E, ALLEYNE A G, et al. A model predictive framework for thermal management of aircraft[C]//Proceedings of the ASME 8th Annual Dynamic Systems and Control Conference. New York: ASME, 2016.
    [3] ROETZEL W, XUAN Y. Dynamic behaviour of heat exchangers[M]. Southampton: WIT Press/Computational Mechanics Publications, 1999.
    [4] 冷伟, 房德山, 徐治皋, 等. 对单相换热器集总参数模型动态初始负偏移的机理分析[J]. 热能动力工程, 2001, 16(3): 287-289. doi: 10.3969/j.issn.1001-2060.2001.03.015

    LENG W, FANG D S, XU Z G, et al. An analysis of the mechanism governing the dynamic and initial negative deviation of a lumped parameter model for a single-phase heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2001, 16(3): 287-289(in Chinese). doi: 10.3969/j.issn.1001-2060.2001.03.015
    [5] 宋俊虓, 袁修干, 林贵平. 某种叉流板翅式热交换器动态性能的计算[J]. 北京航空航天大学学报, 1999, 25(5): 558-560. doi: 10.3969/j.issn.1001-5965.1999.05.017

    SONG J X, YUAN X G, LIN G P. Transient performances calculation of a gas-to-gas crossflow heat exchanger[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 558-560 (in Chinese). doi: 10.3969/j.issn.1001-5965.1999.05.017
    [6] 解增忠, 张俊峰, 罗雄麟. 原油换热网络的动态建模与仿真[C]//第九届全国化学工艺年会. 北京: 中国石化出版社, 2005: 1198-1206.

    XIE Z Z, ZHANG J F, LUO X L. Dynamic modeling and simulation of crude oil heat exchanger networks[C]//Proceedings of the 9th National Chemical Technology Annual Meeting. Beijing: China Petrochemical Press, 2005: 1198-1206(in Chinese).
    [7] ORAVEC J, BAKOŠOVÁ M, TRAFCZYNSKI M, et al. Robust model predictive control and PID control of shell-and-tube heat exchangers[J]. Energy, 2018, 159: 1-10. doi: 10.1016/j.energy.2018.06.106
    [8] CHEN M H, SUN X D, CHRISTENSEN R N, et al. Dynamic behavior of a high-temperature printed circuit heat exchanger: Numerical modeling and experimental investigation[J]. Applied Thermal Engineering, 2018, 135: 246-256. doi: 10.1016/j.applthermaleng.2018.02.051
    [9] HEY J E, HODSON S L, YAZAWA K, et al. Experimental characterization of dynamic heat exchanger behavior[J]. International Journal of Heat and Mass Transfer, 2018, 121: 933-942. doi: 10.1016/j.ijheatmasstransfer.2017.12.135
    [10] SANGI R, MÜLLER D. Dynamic modelling and simulation of a slinky-coil horizontal ground heat exchanger using Modelica[J]. Journal of Building Engineering, 2018, 16: 159-168. doi: 10.1016/j.jobe.2018.01.005
    [11] NASH A L, BADITHELA A, JAIN N. Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes[J]. Applied Energy, 2017, 195: 877-889. doi: 10.1016/j.apenergy.2017.03.092
    [12] AGARWAL A, B M O, PITSO I. Numerical analysis and performance enhancement of compact heat exchanger using computational fluid dynamics[J]. Journal of Engineering Research, 2021, 9: 15503.
    [13] GONG M J, PENG M J, ZHU H S. Research of multiple refined degree simulating and modeling for high pressure feed water heat exchanger in nuclear power plant[J]. Applied Thermal Engineering, 2018, 140: 190-207. doi: 10.1016/j.applthermaleng.2018.05.005
    [14] FRATCZAK M, NOWAK P, CZECZOT J, et al. Simplified dynamical input-output modeling of plate heat exchangers-case study[J]. Applied Thermal Engineering, 2016, 98: 880-893. doi: 10.1016/j.applthermaleng.2016.01.004
    [15] WANG Y R, YOU S J, ZHENG W D, et al. State space model and robust control of plate heat exchanger for dynamic performance improvement[J]. Applied Thermal Engineering, 2018, 128: 1588-1604. doi: 10.1016/j.applthermaleng.2017.09.120
    [16] ROMIE F E. Transient response of gas-to-gas crossflow heat exchangers with neither gas mixed[J]. Journal of Heat Transfer, 1983, 105(3): 563-570. doi: 10.1115/1.3245622
    [17] WHALLEY R, EBRAHIMI K M. Heat exchanger dynamic analysis[J]. Applied Mathematical Modelling, 2018, 62: 38-50. doi: 10.1016/j.apm.2018.04.024
    [18] GVOZDENAC D. Analytical solution of dynamic response of heat exchanger[M]//MITROVIĆ J. Heat exchangers: basics design applications. London: Intechopen, 2012: 53-78.
    [19] AL-DAWERY S K, ALRAHAWI A M, AL-ZOBAI K M. Dynamic modeling and control of plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 2012, 55(23-24): 6873-6880. doi: 10.1016/j.ijheatmasstransfer.2012.06.094
    [20] ZAHID K, PATEL R, MUJTABA I. Development of a dynamic fouling model for a heat exchanger[J]. Chemical Engineering Transactions, 2016, 52: 1135-1140.
    [21] YIN J, JENSEN M K. Analytic model for transient heat exchanger response[J]. International Journal of Heat and Mass Transfer, 2003, 46(17): 3255-3264. doi: 10.1016/S0017-9310(03)00118-2
    [22] GAO T Y, GEER J, SAMMAKIA B. Development and verification of compact transient heat exchanger models using transient effectiveness methodologies[J]. International Journal of Heat and Mass Transfer, 2015, 87: 265-278. doi: 10.1016/j.ijheatmasstransfer.2015.03.091
    [23] PEARSON J. EASY5 user guide[Z]. Chicago: Boeing Company, 2005: 265-278.
    [24] 张一鸣, 袁宁, 陈玉春. 回热循环微燃机中换热器计算模型与仿真研究[J]. 燃气轮机技术, 2012, 25(1): 38-43. doi: 10.3969/j.issn.1009-2889.2012.01.008

    ZHANG Y M, YUAN N, CHEN Y C. Studies on calculation model and simulation of the heat exchanger in micro-turbine[J]. Gas Turbine Technology, 2012, 25(1): 38-43(in Chinese). doi: 10.3969/j.issn.1009-2889.2012.01.008
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  61
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-05-10
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答