留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多约束条件下四旋翼机动轨迹跟踪一体化控制方法

王英勋 李欣 蔡志浩 赵江

王英勋,李欣,蔡志浩,等. 多约束条件下四旋翼机动轨迹跟踪一体化控制方法[J]. 北京航空航天大学学报,2024,50(1):48-60 doi: 10.13700/j.bh.1001-5965.2022.0208
引用本文: 王英勋,李欣,蔡志浩,等. 多约束条件下四旋翼机动轨迹跟踪一体化控制方法[J]. 北京航空航天大学学报,2024,50(1):48-60 doi: 10.13700/j.bh.1001-5965.2022.0208
WANG Y X,LI X,CAI Z H,et al. Integrated control method for quadrotors’ aggressive trajectory tracking under multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):48-60 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0208
Citation: WANG Y X,LI X,CAI Z H,et al. Integrated control method for quadrotors’ aggressive trajectory tracking under multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):48-60 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0208

多约束条件下四旋翼机动轨迹跟踪一体化控制方法

doi: 10.13700/j.bh.1001-5965.2022.0208
详细信息
    通讯作者:

    E-mail:jzhao@buaa.edu.cn

  • 中图分类号: V249.1;TP249

Integrated control method for quadrotors’ aggressive trajectory tracking under multiple constraints

More Information
  • 摘要:

    四旋翼无人机高动态飞行需求的增加使其成为一个越来越热门的研究主题。针对四旋翼执行废墟裂缝和树林缝隙穿越任务时的大机动轨迹状态跟踪控制问题,提出基于模型预测控制的一体化控制方法,包含多约束条件下的高机动轨迹规划和多参考状态量的一体化跟踪控制,并通过飞行试验验证了所提方法相比前馈PID控制方法在跟踪规划的高机动轨迹时的优越性能。在飞行试验中,四旋翼成功穿越了60°滚转角的窄框,其实际滚转角达到60°大角度的同时,z轴误差仅为0.065 m。

     

  • 图 1  本文方法的结构

    Figure 1.  Structure of proposed method

    图 2  廊道约束物理定义

    Figure 2.  Physical definition of corridor constraints

    图 3  四旋翼无人机坐标系与系统模型

    Figure 3.  Coordinate systems and system model of quadrotor UAVs

    图 4  基于线性二次调节的反馈控制状态跟踪

    Figure 4.  Feedback control state tracking based on linear quadratic regulation

    图 5  基于非线性模型预测控制的前馈控制状态跟踪

    Figure 5.  Feed-forward control state tracking based on nonlinear model predictive control

    图 6  LQR与NMPC的控制时间轴比较

    Figure 6.  Control timeline comparison between LQR and NMPC

    图 7  本文方法的总体控制框架

    Figure 7.  Overall control framework of proposed method

    图 8  四旋翼无人机验证平台

    Figure 8.  Quadcopter UAV verification platform

    图 9  穿越60°滚转角窄框时各坐标轴的位置量及各阶导数曲线

    Figure 9.  Three-axis positions and derivative curves when crossing 60° roll narrow gap

    图 10  穿越60°滚转角窄框的轨迹及关键点

    Figure 10.  Trajectory and key points when crossing 60° roll narrow gap

    图 11  穿越60°滚转角窄框时各轴的期望位置和实际位置曲线

    Figure 11.  Three-axis expected and actual positions when crossing 60° roll narrow gap

    图 12  穿越60°滚转角窄框时各坐标轴实际位置和实际滚转角

    Figure 12.  Three-axis actual positions and actual roll angle when crossing 60° roll narrow gap

    图 13  四旋翼穿越60 °滚转角窄框的连续过程

    Figure 13.  Continuous process of a quadrotor crossing 60 ° roll narrow gap

    表  1  四旋翼无人机参数

    Table  1.   Quadcopter UAV parameters

    型号 轴距/mm 电机型号 桨叶型号 总质量/kg
    F330 330 TMOTOR F80 Pro 5055三叶桨 1.2
    下载: 导出CSV

    表  2  60°滚转角穿框轨迹规划的约束设置

    Table  2.   Constraint settings of frame trajectory planning when crossing a 60° roll angle gap

    初始点
    位置量/m
    终止点
    位置量/m
    穿越
    滚转角/(°)
    穿越点
    速度/(m·s−1
    穿越点
    位置量/m
    穿越点
    加速度量/(m·s−2
    穿越前缓冲点
    z轴位置/m
    穿越后缓冲点
    z轴位置/m
    轨迹段数 轨迹段
    时间分配/s
    (0,0,1) 330 60 (2.5,0,0) (3,1,1.5) (0,−8.3138,−5) 1.2 1.2 4 4.3,0.7,0.7,4.3
    下载: 导出CSV

    表  3  本文方法主要参数

    Table  3.   Main parameters of proposed method

    位置量
    权值向量
    速度量
    权值向量
    俯仰角
    权值系数
    滚转角
    权值系数
    期望俯仰角
    权值系数
    期望滚转角
    权值系数
    前馈控制项
    权值系数
    反馈控制项
    权值系数
    控制频率/Hz
    [300,500,300] [30,50,20] 50 300 20 100 0.4 0.65 100
    下载: 导出CSV

    表  4  不同滚转角穿框轨迹下前馈PID控制方法和本文方法的实际穿越点对比

    Table  4.   Comparison of actual crossing points between feed-forward PID control method and proposed method under trajectories with different roll angles

    方法 期望滚
    转角/(°)
    实际
    角度/(°)
    x
    误差/m
    y
    误差/m
    z
    误差/m
    前馈PID
    控制方法
    30 28.32 0.767 0.038 0.210
    40 33.68 0.647 0.107 0.231
    60 53.63 0.726 0.499 0.373
    本文
    方法
    30 31.31 0.229 0.015 0.007
    40 40.46 0.223 0.125 0.076
    60 59.55 0.115 0.373 0.065
    下载: 导出CSV
  • [1] FAESSLER M, FONTANA F, FORSTER C, et al. Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle[J]. Journal of Field Robotics, 2016, 33(4): 431-450. doi: 10.1002/rob.21581
    [2] CASTELLANO G, CASTIELLO C, MENCAR C, et al. Crowd detection in aerial images using spatial graphs and fully-convolutional neural networks[J]. IEEE Access, 2020, 8: 64534-64544. doi: 10.1109/ACCESS.2020.2984768
    [3] CUSTERS B. The future of drone use[M]. Hague: TMC Asser Press, 2016: 3-20.
    [4] MARTINEZ C, SAMPEDRO C, CHAUHAN A, et al. Towards autonomous detection and tracking of electric towers for aerial power line inspection[C]// 2014 International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2014: 284-295.
    [5] PASCHALL S, ROSE J. Fast, lightweight autonomy through an unknown cluttered environment[C]// 2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017: 1-8.
    [6] FALANGA D, MUEGGLER E, FAESSLER M, et al. Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision[C]// 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2017: 5774-5781.
    [7] ZHOU B Y, GAO F, WANG L Q, et al. Robust and efficient quadrotor trajectory generation for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3529-3536. doi: 10.1109/LRA.2019.2927938
    [8] ZHOU B Y, PAN J, GAO F, et al. RAPTOR: Robust and perception-aware trajectory replanning for quadrotor fast flight[J]. IEEE Transactions on Robotics, 2021, 37(6): 1992-2009. doi: 10.1109/TRO.2021.3071527
    [9] GAO F, WU W, GAO W L, et al. Flying on point clouds: online trajectory generation and autonomous navigation for quadrotors in cluttered environments[J]. Journal of Field Robotics, 2019, 36(4): 710-733. doi: 10.1002/rob.21842
    [10] QUAN L, HAN L X, ZHOU B Y, et al. Survey of UAV motion planning[J]. IET Cyber-Systems and Robotics, 2020, 2(1): 14-21. doi: 10.1049/iet-csr.2020.0004
    [11] FAESSLER M, FALANGA D, SCARAMUZZA D. Thrust mixing, saturation, and body-rate control for accurate aggressive quadrotor flight[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 476-482. doi: 10.1109/LRA.2016.2640362
    [12] FOEHN P, SCARAMUZZA D. Onboard state dependent LQR for agile quadrotors[C]// 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2018: 6566-6572.
    [13] FAESSLER M, FRANCHI A, SCARAMUZZA D. Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 620-626. doi: 10.1109/LRA.2017.2776353
    [14] FALANGA D, FOEHN P, LU P, et al. PAMPC: Perception-aware model predictive control for quadrotors[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2019: 1-8.
    [15] SUN S, ROMERO A, FOEHN P, et al. A comparative study of nonlinear MPC and differential-flatness-based control for quadrotor agile flight[J]. IEEE Transactions on Robotics, 2022, 38(6): 3357-3373. doi: 10.1109/TRO.2022.3177279
    [16] HANOVER D, FOEHN P, SUN S H, et al. Performance, precision, and payloads: Adaptive nonlinear MPC for quadrotors[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 690-697. doi: 10.1109/LRA.2021.3131690
    [17] KOSTADINOV D, SCARAMUZZA D. Online weight-adaptive nonlinear model predictive control[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2021: 1180-1185.
    [18] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]// 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 2520-2525.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  30
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-06-12
  • 网络出版日期:  2022-06-23
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答