留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过冷大水滴动力学行为对翼型结冰的影响分析

刘飞宇 邓甜

刘飞宇,邓甜. 过冷大水滴动力学行为对翼型结冰的影响分析[J]. 北京航空航天大学学报,2024,50(1):173-186 doi: 10.13700/j.bh.1001-5965.2022.0213
引用本文: 刘飞宇,邓甜. 过冷大水滴动力学行为对翼型结冰的影响分析[J]. 北京航空航天大学学报,2024,50(1):173-186 doi: 10.13700/j.bh.1001-5965.2022.0213
LIU F Y,DENG T. Influence of dynamic behavior of supercooled large droplets on airfoil icing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):173-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0213
Citation: LIU F Y,DENG T. Influence of dynamic behavior of supercooled large droplets on airfoil icing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):173-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0213

过冷大水滴动力学行为对翼型结冰的影响分析

doi: 10.13700/j.bh.1001-5965.2022.0213
基金项目: 国家自然科学基金(U1933110);结冰与防除冰重点实验室开放课题(IADL20200305);天津市教委科研计划项目(2020KJ036)
详细信息
    通讯作者:

    E-mail: t-deng@cauc.edu.cn

  • 中图分类号: V211.41+2

Influence of dynamic behavior of supercooled large droplets on airfoil icing

Funds: National Natural Science Foundation of China (U1933110); Open Project of Key Laboratory for Icing and Anti-icing (IADL20200305); Scientific Research Project of Tianjin Education Commission (2020KJ036)
More Information
  • 摘要:

    过冷大水滴(SLD)是极端危险的飞行环境之一。因大粒径水滴独特的动力学行为变形破碎、飞溅反弹,传统结冰计算方法难以准确地反映SLD结冰情况。采用Navier-Stokes方法求解流场、Euler方法计算水滴撞击、Shallow Water模型模拟结冰,并与NASA实验结果进行了对比验证方法可信。结果表明:SLD动力学行为对结冰和冰形影响较大。其中,变形破碎改变了水滴运动轨迹和撞击范围,降低了水滴撞击极限,导致上下结冰极限减小2.83 %、2.13 %;飞溅降低了驻点附近水滴收集率,导致前缘积冰量减少8.09 %;反弹显著降低了水滴撞击极限,导致上下结冰极限减小30.69 %、20.01 %;撞击后飞溅反弹二次水滴再入流场使得上下结冰极限增加6.14 %、3.71 %。同时,与干净翼型相比带冰翼型空气动力学性能严重退化,在相同迎角下,升力更小、阻力更大、气动效率更低。

     

  • 图 1  SLD破碎导致的液滴轨迹变化

    Figure 1.  Change of droplet trajectory caused by SLD breakup

    图 2  液滴撞击壁面示意图

    Figure 2.  Diagram of droplet impact on wall

    图 3  准稳态结冰模拟流程图

    Figure 3.  Quasi-steady-state icing simulation flow chart

    图 4  翼型结冰模拟关键参数

    Figure 4.  Key parameters for airfoil icing simulation

    图 5  计算域及网格划分

    Figure 5.  Computational domain and meshing

    图 6  网格无关性验证

    Figure 6.  Grid independence verification

    图 7  翼型前缘冰形特征参数

    Figure 7.  Ice shape characteristic parameters of airfoil leading edge

    图 8  模拟-实验冰形结果对比

    Figure 8.  Comparison of simulation-experiment ice shape results

    图 9  无模型(左)与变形破碎模型(右)云图比较

    Figure 9.  Comparison of cloud images of no model (left) and deformed breakup model (right)

    图 10  翼型弦长中点平面LWC和水滴速度分布比较

    Figure 10.  Comparison of LWC and droplet velocity distribution in midpoint plane of airfoil chord length

    图 11  不同模型下水滴收集率β在翼型表面的变化

    Figure 11.  Variation of droplet collection efficiency β on airfoil surface under different models

    图 12  变形破碎+飞溅反弹模型(左)与再入模型(右)云图比较

    Figure 12.  Comparison of deformation and breakup + splashing and bouncing model (left) cloud images and reinjection model (right)

    图 13  水滴平均直径分布比较

    Figure 13.  Comparison of average diameter distribution of drop

    图 14  不同模型下翼型前缘积冰冰形

    Figure 14.  Icing shape of airfoil leading edge ice accumulationunder different models

    图 15  MVD=20~1000 μm SLD翼型前缘积冰冰形

    Figure 15.  MVD=20~1000 μm SLD ice shape at wing leading edge

    图 16  水膜溢流现象

    Figure 16.  Water film runback phenomenon

    图 17  翼型升阻力系数随时间变化

    Figure 17.  Variation of lift coefficient and drag coefficient of airfoil with time

    图 18  带冰翼型升阻力系数随迎角变化

    Figure 18.  Variation of lift coefficient and drag coefficient of icing airfoil with angle of attack

    图 19  压力系数CP在翼型表面的变化

    Figure 19.  Variation of pressure coefficient CP on airfoil surface

    图 20  吸力峰值示意图

    Figure 20.  Diagram of suction peak

    图 21  翼型周围压力及流线分布

    Figure 21.  Pressure and streamline distribution around airfoil

    表  1  验证算例工况

    Table  1.   Working conditions of examples to be verified

    算例 来流速度/(n mile·h−1) 静温/℃ 迎角/(°) LWC/(g·m−3) MVD/μm 结冰时间/s
    1 200 −10.79 3.8 1.00 20 231
    2 100 −9 0 1.17 140 14×60
    3 100 −18 0 1.46 170 11×60
    下载: 导出CSV

    表  2  翼型前缘冰形特征参数模拟误差

    Table  2.   Simulation error of ice shape characteristic parameters of airfoil leading edge %

    算例 特征参数模拟误差
    Hupper Hlower Hstagnation θupper θlower
    1 8.7 2.7 4.2 0.7 3.0
    2 −2.3 −9.7 −8.7 2.5 −1.9
    3 −3.2 1.9 −2.7 −2.1 7.6
    下载: 导出CSV

    表  3  不同动力学行为对翼型前缘冰形特征参数的影响

    Table  3.   Effects of different dynamic behaviors on ice shape characteristic parameters at airfoil leading edge %

    模型 特征参数变化
    Hupper Hlower θupper θlower Slimit,upper Slimit,lower
    变形破碎 −0.73 0.09 −0.31 0.01 −2.83 −2.13
    飞溅反弹 −4.33 3.52 1.41 −0.57 −30.69 −21.01
    再入 2.97 −2.14 −0.18 0.03 6.14 3.71
    下载: 导出CSV

    表  4  数值模拟工况

    Table  4.   Working conditions of numerical simulation

    来流速度/
    (n mile·h−1)
    静温/℃ 静压/Pa 迎角/(°) LWC/
    (g·m−3)
    结冰
    时间/s
    200 −10.79 101325 3.8 1.00 210
    下载: 导出CSV

    表  5  翼型前缘冰形特征参数的变化

    Table  5.   Variation of ice shape characteristic parameters at the airfoil leading edge

    MVD/μm ΔHupper% ΔHlower% Δθupper% Δθlower% ΔSlimit,upper% ΔSlimit,lower%
    60 −1.52 −5.82 −10.35 5.99 287.84 6.36
    80 1.22 0.63 −1.51 0.64 54.31 13.82
    100 0.16 −0.59 −1.21 0.29 32.44 11.83
    120 −0.76 −0.33 −2.35 0.16 14.56 5.41
    140 4.33 −0.52 4.07 0.03 16.41 5.43
    200 1.84 −0.33 −0.76 0.19 32.99 10.73
    300 4.05 −0.12 1.01 −0.13 26.13 9.08
    400 3.19 −1.53 2.53 −0.06 12.57 3.85
    500 −1.60 0.93 0.98 −0.18 27.23 5.25
    1000 12.53 17.04 13.25 −3.81 67.04 12.13
    下载: 导出CSV
  • [1] FEDERAL AVIATION ADMINISTRATION. Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions: RIN 2120–AJ34[S]. Washington, D. C. : Federal Aviation Administration (FAA), DOT, 2010.
    [2] VILLEDIEU P, TRONTIN P, GUFFOND D, et al. SLD Lagrangian modeling and capability assessment in the frame of ONERA 3D icing suite[C]//4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA 2012: 3132.
    [3] HONSEK R, HABASHI W G, AUBE M S. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4): 1290-1296. doi: 10.2514/1.34541
    [4] BOURGAULT Y, HABASHI W G, DOMPIERRE J, et al. A finite element method study of Eulerian droplets impingement models[J]. International Journal for Numerical Methods in Fluids, 2015, 29(4): 429-449.
    [5] IULIANO E, MINGIONE G, PETROSINO F, et al. Eulerian modeling of SLD physics towards more realistic aircraft icing simulation[C]// AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7676.
    [6] LEAL L G. Bubbles, drops and particles[J]. International Journal of Multiphase Flow, 1979, 5(3): 229-230. doi: 10.1016/0301-9322(79)90021-1
    [7] PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6): 741-757. doi: 10.1016/0301-9322(87)90063-2
    [8] HSIANG L P, FAETH G M. Near-limit drop deformation and secondary breakup[J]. Int Multiphase Flow, 1992, 18(5): 635-652. doi: 10.1016/0301-9322(92)90036-G
    [9] O'ROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup: No. 872089[R]. Toronto: SAE Technical Paper, 1987: 148-161.
    [10] CLARK M M. Drop breakup in a turbulent flow-I. Conceptual and modeling considerations[J]. Chemical Engineering Science, 1988, 43(3): 671-679. doi: 10.1016/0009-2509(88)87025-8
    [11] IBRAHIM E A, YANG H Q, PRZEKWAS A J. Modeling of spray droplets deformation and breakup[J]. Journal of Propulsion and Power, 1993, 9(4): 651-654. doi: 10.2514/3.23672
    [12] BAI C, GOSMAN A D. Development of methodology for spray impingement simulation: No. 950283[R]. Detroit: SAE Transactions, 1995: 550-568.
    [13] MUNDO C, SOMMERFELD M, TROPEA C. Droplet-wall collisions: Experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21(2): 151-173. doi: 10.1016/0301-9322(94)00069-V
    [14] MUNDO C, TROPEA C, SOMMERFELD M. Numerical and experimental investigation of spray characteristics in the vicinity of a rigid wall[J]. Experimental Thermal & Fluid Science, 1997, 15(3): 80-86.
    [15] MUNDO C, SOMMERFELD M, TROPEA C. On the modeling of liquid sprays impinging on surfaces[J]. Atomization & Sprays, 1998, 8(6): 625-652.
    [16] RUTKOWSKI A, WRIGHT W, POTAPCZUK M. Numerical study of droplet splashing and re-impingement[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA 2003: 388.
    [17] WRIGHT W. Further refinement of the LEWICE SLD model[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 464.
    [18] NORDE E, HOSPERS J M, VAN DER WEIDE E, et al. Splashing model for impact of supercooled large droplets on a thin liquid film[C]//52nd Aerospace Sciences Meeting. Reston: AIAA, 2014: 738.
    [19] BILODEAU D R, HABASHI W, BARUZZI G, et al. An Eulerian re-impingement model of splashing and bouncing supercooled large droplets[C]// 5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013: 3058.
    [20] TRUJILLO M F, MATHEWS W S, LEE C F, et al. Modelling and experiment of impingement and atomization of a liquid spray on a wall[J]. International Journal of Engine Research, 2000, 1(1): 87-105. doi: 10.1243/1468087001545281
    [21] 易贤, 李维浩, 王庄宇等. 过冷大水滴结冰过程中动力学行为的影响因素[C]//第十届全国流体力学学术会议论文摘要集. 杭州: 中国力学学会流体力学专业委员会, 2018, 1: 357.

    Yi Xian, Li Weihao, Wang Zhuangyu et al. Influence factors of dynamic behavior of supercooled large water droplets during icing process [C]//Abstracts of the 10th National Conference on Fluid Mechanics.Hangzhou : Fluid Mechanics Committee of Chinese Society of Mechanics, 2018, 1 : 357(in Chinese).
    [22] 张辰, 孔维梁, 刘洪. 大粒径过冷水滴结冰模拟破碎模型研究[J]. 空气动力学学报, 2013, 31(2): 144-150.

    ZHANG C, KONG W L, LIU H. Research on simulation crushing model of large particle size supercooled water droplets icing[J]. Journal of Aerodynamics, 2013, 31(2): 144-150(in Chinese).
    [23] 任靖豪, 王强, 刘宇, 等. 大型商用运输机机翼增升构型水滴撞击特性计算[J]. 空气动力学学报, 2021, 39(1): 52-58.

    REN J H, WANG Q, LIU Y, et al. Calculation of droplet impact characteristics of wing lift configuration for large commercial transport aircraft[J]. Journal of Aerodynamics, 2021, 39(1): 52-58 (in Chinese).
    [24] 周志宏, 易贤, 桂业伟, 等. 水滴撞击特性的高效计算方法[J]. 空气动力学学报, 2014, 32(5): 712-716. doi: 10.7638/kqdlxxb-2012.0179

    ZHOU Z H, YI X, GUI Y W, et al. Efficient method for calculating droplet impact characteristics[J]. Journal of Aerodynamics, 2014, 32(5): 712-716(in Chinese). doi: 10.7638/kqdlxxb-2012.0179
    [25] POTAPCZUK M G, TSAO J C, KING-STEEN L C. Bimodal SLD ice accretion on a NACA 0012 airfoil model[C]//9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017: 4478.
    [26] SUN F, HAN S, QIAN G, et al. A novel multi-objective optimization model for minute-in-trail strategy based on sector workload restriction[C]//2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS). Piscataway: IEEE Press, 2015: 65-70.
    [27] HSIANG L P, FAETH G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. International Journal of Multiphase Flow, 1995, 21(4): 545-560. doi: 10.1016/0301-9322(94)00095-2
    [28] OZCER I, SWITCHENKO D, BARUZZI G S, et al. Multi-shot icing simulations with automatic re-meshing: No. 2019-01-1956[R]. Montreal: SAE Technical Paper, 2019: 956-972.
    [29] FOULADI H, ALIAGA C N, HABASHI W G. Quasi-unsteady icing simulation of an oscillating airfoil[C]//7th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2015: 3020.
    [30] WRIGHT W, CHUNG J. Correlation between geometric similarity of ice shapes and the resulting aerodynamic performance degradation-A preliminary investigation using WIND[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA , 2000: 97.
    [31] BRAGG M, BROEREN A, ADDY H, et al. Airfoil ice-accretion aerodynamic simulation[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 85.
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  80
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-06-06
  • 网络出版日期:  2022-09-15
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答