留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机高机动抗扰轨迹跟踪控制方法

王英勋 宋欣屿 赵江 蔡志浩

王英勋, 宋欣屿, 赵江, 等 . 无人机高机动抗扰轨迹跟踪控制方法[J]. 北京航空航天大学学报, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216
引用本文: 王英勋, 宋欣屿, 赵江, 等 . 无人机高机动抗扰轨迹跟踪控制方法[J]. 北京航空航天大学学报, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216
WANG Yingxun, SONG Xinyu, ZHAO Jiang, et al. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216(in Chinese)
Citation: WANG Yingxun, SONG Xinyu, ZHAO Jiang, et al. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216(in Chinese)

无人机高机动抗扰轨迹跟踪控制方法

doi: 10.13700/j.bh.1001-5965.2022.0216
详细信息
    通讯作者:

    蔡志浩, E-mail: czh@buaa.edu.cn

  • 中图分类号: V249.1

Anti-disturbance trajectory tracking control method for aggressive quadrotors

More Information
  • 摘要:

    针对传统的四旋翼控制方法在高机动飞行时控制效果不佳,难以跟踪机动性较强的轨迹且控制精度较低的问题,设计了基于增量非线性动态逆控制(INDI)方法和微分平坦前馈的轨迹跟踪控制器,不仅提高了高机动轨迹的跟踪精度,也增强了抗扰能力。由于角加速度无法直接获得,该方法对其非常敏感,设计了多种角加速度估计方法进行对比,通过飞行试验选择了效果最佳的互补滤波方法。试验结果证明:设计的基于互补滤波的前馈INDI方法可以控制飞行器快速、准确地跟踪高机动轨迹,且具有较强的抗扰能力。

     

  • 图 1  四旋翼及机体坐标系定义

    Figure 1.  Quadrotor with body-fixed reference system

    图 2  旋翼序号及旋转方向

    Figure 2.  Rotor serial number and rotation direction

    图 3  总体控制框图

    Figure 3.  Overall control diagram

    图 4  位置和速度控制

    Figure 4.  Position and velocity control

    图 5  姿态和角速度控制

    Figure 5.  Attitude and angular rate control

    图 6  互补滤波

    Figure 6.  Complementary filter

    图 7  角加速度估计结果

    Figure 7.  Angular acceleration estimation results

    图 8  低速轨迹跟踪曲线

    Figure 8.  Low speed trajectory tracking curves

    图 9  中速轨迹跟踪曲线

    Figure 9.  Medium speed trajectory tracking curves

    图 10  高机动轨迹跟踪曲线

    Figure 10.  Aggressive trajectory tracking curves

    图 11  高机动轨迹跟踪曲线

    Figure 11.  Aggressive trajectory tracking curves

    图 12  悬挂纸板的四旋翼无人机

    Figure 12.  Quadrotor with cardboard drag plate

    图 13  带纸板轨迹跟踪曲线

    Figure 13.  Tajectory tracking curves with cardboard drag plate

    图 14  带纸板轨迹跟踪曲线

    Figure 14.  Trajectory tracking curves with cardboard drag plate

    图 15  悬停抗扰试验

    Figure 15.  Hover test with disturbance

    图 16  悬停抗扰曲线

    Figure 16.  Curves for hover with disturbance

    表  1  低速轨迹跟踪效果

    Table  1.   Low speed trajectory tracking performance

    参数 前馈PID方法 前馈INDI方法
    位置均方根误差/cm 8.091 4.232
    偏航角均方根误差/(°) 2.735 0.433
    最大速度/(m·s-1) 3.769 4.116
    平均速度/(m·s-1) 1.944 2.086
    最大加速度/(m·s-2) 8.855 9.192
    平均加速度/(m·s-2) 3.864 4.122
    下载: 导出CSV

    表  2  中速轨迹跟踪效果

    Table  2.   Medium speed trajectory tracking performance

    参数 前馈PID方法 前馈INDI方法
    位置均方根误差/cm 17.24 6.021
    偏航角均方根误差/(°) 2.042 1.972
    最大速度/(m·s-1) 6.233 1 6.425
    平均速度/(m·s-1) 2.414 8 2.601
    最大加速度/(m·s-2) 16.097 5 13.839
    平均加速度/(m·s-2) 5.299 5 4.919
    下载: 导出CSV

    表  3  高机动轨迹跟踪效果

    Table  3.   Aggressive trajectory tracking performance

    参数 LPF KF CF
    位置均方根误差/cm 15.072 14.084 10.310
    偏航角均方根误差/(°) 4.751 4.298 1.552
    平均速度/(m·s-1) 4.654 4.643 4.654
    最大速度/(m·s-1) 10.815 10.922 10.416
    平均加速度/(m·s-2) 7.604 7.555 7.434
    最大加速度/(m·s-2) 18.510 17.239 17.119
    下载: 导出CSV

    表  4  轨迹跟踪效果

    Table  4.   Trajectory tracking performance

    参数 前馈INDI方法(不带纸板) 前馈INDI方法(带纸板) 前馈PID方法(不带纸板) 前馈PID方法(带纸板)
    位置均方根误差/cm 4.232 4.494 8.091 10.00
    偏航角均方根误差/(°) 0.433 0.460 2.735 6.592
    最大速度/(m·s-1) 4.116 4.034 3.769 3.283
    平均速度/(m·s-1) 2.086 2.081 1.944 1.950
    最大加速度/(m·s-2) 9.192 9.299 8.855 10.147
    平均加速度/(m·s-2) 4.122 4.096 3.864 4.078
    下载: 导出CSV

    表  5  悬停抗扰效果

    Table  5.   Performance for hover with disturbance

    参数 前馈INDI方法 前馈PID方法
    位置均方根误差/cm 1.199 12.273
    位置最大误差/cm 4.502 47.670
    偏航角均方根误差/(°) 0.018 9 0.059 6
    偏航角最大误差/(°) 0.081 9 0.269
    下载: 导出CSV
  • [1] ROOT P. Fast lightweight autonomy (FLA) (Archived)[EB/OL]. (2020-04-08)[2022-04-01]. https://www.darpa.mil/program/fast-lightweight-autonomy.
    [2] 吕震华, 高亢. 美国无人集群城市作战应用发展综述[J]. 中国电子科学研究院学报, 2020, 15(8): 738-745.

    LV Z H, GAO K. Review of the development of drone swarm urban combat applications in the USA[J]. Journal of CAEIT, 2020, 15(8): 738-745(in Chinese).
    [3] BYRNES C I, ISIDORI A. Nonlinear control systems[J]. Lecture Notes in Control and Information Sciences, 2003, 242(65): 408.
    [4] SNELL S A, NNS D F, ARRARD W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Guidance, 2015, 15(4): 976-984.
    [5] LEE D, KIM H J, SASTRY S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter[J]. International Journal of Control Automation and Systems, 2009, 7(3): 419-428.
    [6] SIEBERLING S, CHU Q P, MULDER J A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732-1742.
    [7] SIMPLÍCIO P, PAVEL M D, VAN KAMPEN E, et al. An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2013, 21(8): 1065-1077.
    [8] LU P, VAN KAMPEN E J, DE VISSER C, et al. Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2016, 57: 126-141.
    [9] SMEUR E J, CHU Q P, CROON G. Adaptive incremental nonlinear dynamic inversion for attitude control of micro aerial vehicles: AIAA 2016-1390[R]. Reston: AIAA, 2016.
    [10] SMEUR E J J, DE CROON G C H E, CHU Q. Cascaded incremental nonlinear dynamic inversion for MAV disturbance rejection[J]. Control Engineering Practice, 2018, 73: 79-90.
    [11] TAL E, KARAMAN S. Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness[J]. IEEE Transactions on Control Systems Technology, 2021, 29(3): 1203-1218.
    [12] ZHAO K, ZHANG J, MA D, et al. Composite disturbance rejection attitude control for quadrotor with unknown disturbance[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6894-6903.
    [13] WANG Z, ZHAO J, CAI Z, et al. Onboard actuator model-based incremental nonlinear dynamic inversion for quadrotor attitude control: Method and application[J]. Chinese Journal of Aeronautics, 2021, 34(11): 216-227.
    [14] JI C H, KIM C S, KIM B S. A hybrid incremental nonlinear dynamic inversion control for improving flying qualities of asymmetric store configuration aircraft[J]. Aerospace, 2021, 8(5): 23.
    [15] CHEN G, LIU A, HU J, et al. Attitude and altitude control of unmanned aerial-underwater vehicle based on incremental nonlinear dynamic inversion[J]. IEEE Access, 2020, 8: 156129-156138.
    [16] OVASKA S J, VALIVⅡTA S. Angular acceleration measurement: A review[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(5): 1211-1217.
    [17] BUBNOV A V, EMASHOV V A, CHUDINOV A N, et al. Measurement methods for angular acceleration and errors for angular velocity of synchrophase electric drive[J]. Measurement Techniques, 2014, 57(8): 860-865.
    [18] CHENG S, FU M, WANG M, et al. Modeling for fluid transients in liquid-circular angular accelerometer[J]. IEEE Sensors Journal, 2017, 17(2): 267-273.
    [19] MOKHTARI E, ELHABIBY M, SIDERIS M G. Wavelet spectral techniques for error mitigation in the superconductive angular accelerometer output of a gravity gradiometer system[J]. IEEE Sensors Journal, 2017, 17(12): 3782-3793.
    [20] ALROWAIS H, GETZ P, KIM M G, et al. Bio-inspired fluidic thermal angular accelerometer[C]//IEEE International Conference on Micro Electro Mechanical Systems. Piscataway: IEEE Press, 2016: 15821613.
    [21] COSTELLO M, JITPRAPHAI T. Determining angular velocity and angular acceleration of projectiles using triaxial acceleration measurements[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 73-80.
    [22] VALIVⅡTA S, OVASKA S J. Delayless acceleration measurement method for elevator control[J]. IEEE Transactions on Industrial Electronics, 1998, 45(2): 364-366.
    [23] CHOUKROUN D, BAR-ITZHACK I Y, OSHMAN Y. Novel quaternion Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 174-190.
    [24] VALENTI R G, DRYANOVSKI I, XIAO J. A linear Kalman filter for MARG orientation estimation using the algebraic quaternion algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 467-481.
    [25] BELANGER P R, DOBROVOLNY P, HELMY A, et al. Estimation of angular velocity and acceleration from shaft encoder measurements[J]. International Journal of Robotics Research, 2002, 17(11): 1225-1233.
    [26] HAN J D, HE Y Q, XU W L. Angular acceleration estimation and feedback control: An experimental investigation[J]. Mechatronics, 2007, 17(9): 524-532.
    [27] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 2520-2525.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  94
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-05-26
  • 网络出版日期:  2022-06-14

目录

    /

    返回文章
    返回
    常见问答