留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池热失控气体毒性风险分析方法

张青松 曲奕润 刘添添

张青松,曲奕润,刘添添. 锂离子电池热失控气体毒性风险分析方法[J]. 北京航空航天大学学报,2024,50(1):12-19 doi: 10.13700/j.bh.1001-5965.2022.0217
引用本文: 张青松,曲奕润,刘添添. 锂离子电池热失控气体毒性风险分析方法[J]. 北京航空航天大学学报,2024,50(1):12-19 doi: 10.13700/j.bh.1001-5965.2022.0217
ZHANG Q S,QU Y R,LIU T T. Risk analysis method for thermal runaway gas toxicity of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):12-19 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0217
Citation: ZHANG Q S,QU Y R,LIU T T. Risk analysis method for thermal runaway gas toxicity of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):12-19 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0217

锂离子电池热失控气体毒性风险分析方法

doi: 10.13700/j.bh.1001-5965.2022.0217
基金项目: 国家自然科学基金民航联合研究基金重点支持项目(U2033204)
详细信息
    通讯作者:

    E-mail:nkzqsong@126.com

  • 中图分类号: X949

Risk analysis method for thermal runaway gas toxicity of lithium-ion batteries

Funds: Key Program of the Joint Fund for Civil Aviation Research Fund with National Natural Science Foundation of China (U2033204)
More Information
  • 摘要:

    为研究锂离子电池热失控气体中主要有毒物质的危害程度,提出一种基于风险评估理论的锂离子电池热失控气体毒性风险分析方法。以点燃参数表征锂离子电池热失控发生概率,利用2种有效剂量分数(FED)方程与气体传感器阵列检测结果,建立锂离子电池热失控气体毒性动力学模型,进而表征气体毒性造成的后果,分析不同荷电状态(SOC)下三元锂离子电池热失控气体的毒性风险。结果表明:高SOC锂离子电池更易进入热失控状态,热失控释放的CO、HF及气体总量随SOC的增加而增加;锂离子电池SOC越高,热失控释放气体毒性风险越大,100% SOC锂离子电池毒性风险约为25% SOC锂离子电池的8倍,需要11倍的新鲜空气稀释才能达到安全浓度。研究结果可为锂离子电池热失控早期预警及气体毒性评价提供数据参考。

     

  • 图 1  实验平台示意图

    Figure 1.  Schematic diagram of experimental platform

    图 2  不同SOC电池热失控全过程气体分析

    Figure 2.  Gas analysis of whole process of thermal runaway in different SOC batteries

    图 3  电池热失控后实验舱内COx物质的量

    Figure 3.  Amount of COx products in experimental cabin after battery thermal runaway

    图 4  不同SOC电池热失控气体FED模型

    Figure 4.  Thermal runaway gas FED modes by batteries at different SOC

    表  1  实验电池参数

    Table  1.   Experimental battery parameters

    参数 数值
    高度/mm 65.1
    直径/mm 18.5
    额定容量/(mA·h) 3500
    额定电压/V 3.635
    两端电压/V 3.59±0.05(25% SOC)
    3.72±0.05(50% SOC)
    3.92±0.05(75% SOC)
    4.16±0.05(100% SOC)
    下载: 导出CSV

    表  2  不同SOC电池关键参数

    Table  2.   Key parameters of batteries at different SOC

    SOC Δt/s Tdrop/℃ Tvent/℃ TTR/℃ Tgmax/℃ Pmax/MPa P1/MPa dP/dtmax I
    25% SOC 182±44 149.39±5.8 167.44±2.62 239.26±20.23 367.36±30.50 0.3158±0.127 0.1158±0.004 0.08248±0.062 2.86
    50% SOC 140±10 144.47±2.88 162.29±3.23 224.26±6.25 396.86±23.46 0.2624±0.012 0.1267±0.003 0.08463±0.037 2.72
    75% SOC 127±19 142.91±4.05 158.71±2.61 213.49±5.89 669.45±196.3 0.2653±0.059 0.1343±0.003 0.09264±0.033 2.66
    100% SOC 105±19 133.78±1.30 148.14±3.50 193.86±4.33 868.36±334.4 0.3112±0.067 0.1378±0.003 0.10216±0.037 2.53
    下载: 导出CSV

    表  3  不同SOC释放气体量

    Table  3.   Amountof vented gases at different SOC

    SOC n0/mol nTR/mol Δn/mol ΔV/L
    25% SOC 0.838 0.855 0.017 0.381
    50% SOC 0.834 0.928 0.094 2.106
    75% SOC 0.836 1.081 0.245 5.488
    100% SOC 0.838 1.112 0.274 6.138
    下载: 导出CSV

    表  4  不同SOC电池释放毒性气体体积分数

    Table  4.   Concentration of toxic gas released by batteries at different SOC

    SOC VHF/10−6 VCO $V_{{\mathrm{CO}}_2} $
    25% SOC 2.85 0.0198 0.1793
    50% SOC 4.74 0.0791 0.1922
    75% SOC 4.33 0.0865 0.1832
    100% SOC 6.29 0.1557 0.1680
     注:CO的IDLH限值为0.012,CO2的IDLH限值为0.04,HF的IDLH限值为0.3。
    下载: 导出CSV

    表  5  不同SOC电池热失控气体毒性风险率

    Table  5.   Risk rate of thermal runaway gas toxicity of different SOC batteries

    SOC I LFED $t_{{{X}}_{\mathrm{FED}}=1} $/s V
    25% SOC 2.86 1.85 29 0.022
    50% SOC 2.72 3.85 20 0.071
    75% SOC 2.66 4.15 19 0.082
    100% SOC 2.53 5.97 14 0.169
    下载: 导出CSV
  • [1] 齐创, 邝男男, 张亚军, 等. 高比能锂离子电池模组热扩散行为仿真研究[J]. 高电压技术, 2021, 47(7): 2633-2643. doi: 10.13336/j.1003-6520.hve.20201049

    QI C, KUANG N N, ZHANG Y J, et al. Simulation study on the thermal propagation behavior of high energy density lithium-ion battery module[J]. High Voltage Engineering, 2021, 47(7): 2633-2643(in Chinese). doi: 10.13336/j.1003-6520.hve.20201049
    [2] 张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825.

    ZHANG Q S, QU Y R, HAO C L, et al. In-situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825(in Chinese).
    [3] 张青松, 刘添添, 郝朝龙, 等. 锂离子电池热失控气体快速检测及危险性方法[J]. 北京航空航天大学学报, 2023, 49(9): 2227-2233.

    ZHANG Q S, LIU T T, HAO C L, et al. Study on rapid analysis method of thermal runaway gas composition and risk of lithium ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2227-2233(in Chinese).
    [4] 张青松, 罗星娜, 程相静, 等. 基于锂离子电池温降指数的细水雾添加剂筛选方法[J]. 北京航空航天大学学报, 2020, 46(6): 1073-1079. doi: 10.13700/j.bh.1001-5965.2019.0362

    ZHANG Q S, LUO X N, CHENG X J, et al. Method for screening fine water mist additive based on temperature drop index of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1073-1079(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0362
    [5] 张青松, 刘添添, 赵子恒. 锂离子电池热失控气体燃烧对热失控传播影响的量化方法研究[J]. 北京航空航天大学学报, 2023, 49(1): 17-22.

    ZHANG Q S, LIU T T, ZHAO Z H. Study on quantitative method of the influence of thermal runaway gas combustion on thermal runaway propagation of lithium ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 17-22(in Chinese).
    [6] SAID A O, LEE C, STOLIAROVS I. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: 227347. doi: 10.1016/j.jpowsour.2019.227347
    [7] GAO S, LU L, OUYANG M, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack[J]. Journal of the Electrochemical Society, 2019, 166(10): A2065-A2073. doi: 10.1149/2.1011910jes
    [8] FENG X, SUN J, OUYANG M, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273.
    [9] LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Author correction: Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2018, 8(1): 5265.
    [10] LAMB J, ORENDORFF C J, ROTH E P, et al. Studies on the thermal breakdown of common Li-ion battery electrolyte components[J]. Journal of the Electrochemical Society, 2015, 162(10): A2131-A2135. doi: 10.1149/2.0651510jes
    [11] GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633. doi: 10.1039/C3RA45748F
    [12] ABRAHAM D P, ROTH E P, KOSTECKI R, et al. Diagnostic examination of thermally abused high-power lithium-ion cells[J]. Journal of Power Sources, 2006, 161(1): 648-657.
    [13] SUN J, LI J, ZHOU T, et al. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery[J]. Nano Energy, 2016, 27: 313-319.
    [14] LEBEDEVA N P, BOON-BRETT L. Considerations on the chemical toxicity of contemporary Li-ion battery electrolytes and their components[J]. Journal of the Electrochemical Society, 2016, 163(6): A821-A830.
    [15] NEDJALKOV A, MEYER J, KOHRING M, et al. Toxic gas emissions from damaged lithium ion batteries—Analysis and safety enhancement solution[J]. Batteries, 2016, 2(1): 5. doi: 10.3390/batteries2010005
    [16] STURK D, ROSELL L, BLOMQVIST P, et al. Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61.
    [17] National Research Council. Acute exposure guideline levels for selected airborne chemicals (Volume 13)[M]. Washington, D.C.: National Academies Press, 2013.
    [18] LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021(1): 1-13.
    [19] PARK Y U, SEO D H, KIM B, et al. Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries[J]. Scientific Reports, 2012, 2: 704.
    [20] LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231.
    [21] RIBIÈRE P, GRUGEON S, MORCRETTE M, et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280.
    [22] DIAZ F, WANG Y, WEYHE R, et al. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111.
    [23] 张宇, 白伟, 史砚磊, 等. 基于热失控风险指数的锂电池安全评价方法[J]. 北京航空航天大学学报, 2021, 47(5): 912-918.

    ZHANG Y, BAI W, SHI Y L, et al. Evaluation method of lithium battery safety based on thermal runaway risk index[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 912-918(in Chinese).
    [24] International Organization for Standardization. Life-threatening components of fire-guidelines for the estimation of time to compromised tenability in fires: ISO 13571[S]. Geneve: International Organization for Standardization, 2012.
    [25] International Organization for Standardization. Estimation of the lethal toxic potency of fire effluents: ISO 13344[S]. Geneve: International Organization for Standardization, 2015.
    [26] 王青松, 平平, 孙金华. 锂离子电池热危险性及安全对[M]. 北京: 科学出版社, 2017: 123-124.

    WANG Q S, PING P, SUN J H. Thermal hazards and safety measures of lithium-ion batteries[M]. Beijing: Science Press, 2017: 123-124(in Chinese).
    [27] YANG H, ZHUANG G V, ROSS JR P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6[J]. Journal of Power Sources, 2006, 161(1): 573-579.
    [28] KAWAMURA T, OKADA S, YAMAKI J I. Decomposition reaction of LiPF6-based electrolytes for lithium ion-cells[J]. Power Sources, 2006, 156(2): 547-554. doi: 10.1016/j.jpowsour.2005.05.084
    [29] WILKEN S, TRESKOW M, SCHEERS J, et al. Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy[J]. RSC Advances, 2013, 3(37): 16359-16364.
    [30] TIKUISIS P, KANE D, MCLELLAN T, et al. Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide[J]. Journal of Applied Physiology, 1992, 72(4): 1311-1319. doi: 10.1152/jappl.1992.72.4.1311
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  66
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-04-25
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答