留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ML组合的CYGNSS海面风速反演质量控制模型

张云 赵星宇 杨树瑚 孙聪 韩彦岭 尹继伟

张云,赵星宇,杨树瑚,等. ML组合的CYGNSS海面风速反演质量控制模型[J]. 北京航空航天大学学报,2024,50(1):20-29 doi: 10.13700/j.bh.1001-5965.2022.0220
引用本文: 张云,赵星宇,杨树瑚,等. ML组合的CYGNSS海面风速反演质量控制模型[J]. 北京航空航天大学学报,2024,50(1):20-29 doi: 10.13700/j.bh.1001-5965.2022.0220
ZHANG Y,ZHAO X Y,YANG S H,et al. Quality control model of CYGNSS sea surface wind speed retrieval based on ML combination[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):20-29 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0220
Citation: ZHANG Y,ZHAO X Y,YANG S H,et al. Quality control model of CYGNSS sea surface wind speed retrieval based on ML combination[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):20-29 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0220

ML组合的CYGNSS海面风速反演质量控制模型

doi: 10.13700/j.bh.1001-5965.2022.0220
基金项目: 国家自然科学基金(41871325,42176175); 国家重点研发计划(2019YFD0900805)
详细信息
    通讯作者:

    E-mail:shyang@shou.edu.cn

  • 中图分类号: V221+.3;TB553

Quality control model of CYGNSS sea surface wind speed retrieval based on ML combination

Funds: National Natural Science Foundation of China (41871325,42176175); National Key R & D Program of China (2019YFD0900805)
More Information
  • 摘要:

    卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出一种基于机器学习(ML)组合的海面风速反演模型。在基于CNN回归模型的CYGNSS反演海面风速基础上,ML分类模型生成CNN回归结果的质量标志位,该标志位可以检测并删除CNN回归结果的异常值,进一步提高风速反演结果的数据质量,ML分类模型能够更好地考虑各种数据误差之间的相互作用,而不是单独使用每个条件的阈值,以达到更优的海面风速反演精度的效果。实验对比了Logistic回归(LR)、决策树(DT)、朴素贝叶斯模型、K最邻近(KNN)算法、神经网络(NN) 模型、支持向量机(SVM) 算法等6个分类模型,其中,基于KNN算法的分类模型对风速反演质量控制的效果最优。所提风速反演组合模型显著提高了反演结果的精度,在0~20 m/s区间内,异常样本过滤率为81.27%,在所有被过滤的数据中,过滤正确率为86.03%;风速反演误差的均方根误差从无ML分类模型的1.7 m/s降低到有ML分类模型的1.44 m/s,其中,训练样本为0~10 m/s的反演结果精度提升效果较为明显,证明了所提风速反演组合模型对风速质量控制的有效性。

     

  • 图 1  ML组合模型结构

    Figure 1.  Structure of ML combined model

    图 2  ML分类模型流程

    Figure 2.  Flowchart of ML classification model

    图 3  训练集与测试集数据分布

    Figure 3.  Training data distribution and test data distribution

    图 4  反演风速与真实风速对比散点图

    Figure 4.  Scatter plot of inverted wind speed vs. true wind speed

    图 5  异常样本分布

    Figure 5.  Distribution of abnormal samples

    表  1  ML组合模型性能分析

    Table  1.   Performance analysis of ML combination model

    模型 M/(m·s−1) R/(m·s−1) B/(m·s−1) R2
    CNN 1.47 1.70 0.21 0.69
    CNN-LR 1.46 1.68 1.32 0.71
    CNN-DT 1.34 1.52 0.22 0.73
    CNN-Bayes 1.41 1.59 0.19 0.73
    CNN-KNN 1.19 1.44 0.17 0.76
    CNN-NN 1.28 1.49 0.13 0.69
    CNN-SVM 1.43 1.62 1.92 0.61
    下载: 导出CSV

    表  2  分类模型过滤性能比较

    Table  2.   Comparison of filtering performance of classification models

    分类模型 过滤正确率/% 异常样本过滤率/% 耗时/s
    LR 16.43 14.25 21598
    DT 70.91 69.98 71153
    Bayes 80.95 32.29 40426
    KNN 86.03 81.27 66311
    NN 81.03 80.91 29108
    SVM 32.30 40.98 41803
    下载: 导出CSV

    表  3  CNN-KNN模型性能分析

    Table  3.   CNN-KNN model performance analysis

    风速区间/(m·s−1) M/(m·s−1) R/(m·s−1) B/(m·s−1) R2
    CNN CNN-KNN CNN CNN-KNN CNN CNN-KNN CNN CNN-KNN
    0~5 1.51 1.01 1.85 1.16 0.97 0.78 0.58 0.78
    5~10 1.12 0.97 1.24 1.2 0.24 0.13 0.72 0.75
    10~15 1.67 1.69 1.86 1.77 1.3 1.18 0.57 0.59
    15~20 2.94 3.02 3.41 3.31 2.15 1.98 0.18 0.19
    下载: 导出CSV
  • [1] MASHBURN J, AXELRAD P, ZUFFADA C, et al. Improved GNSS-R ocean surface altimetry with CYGNSS in the seas of Indonesia[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6071-6087. doi: 10.1109/TGRS.2020.2973079
    [2] HUANG F X, GARRISON J L, RODRIGUEZ-ALVAREZ N, et al. Sequential processing of GNSS-R delay-Doppler maps to estimate the ocean surface wind field[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10202-10217. doi: 10.1109/TGRS.2019.2931847
    [3] ZHU Y C, TAO T Y, YU K G, et al. Sensing sea ice based on Doppler spread analysis of spaceborne GNSS-R data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 217-226. doi: 10.1109/JSTARS.2019.2955175
    [4] YIN C, LOPEZ-BAEZA E, MARTIN-NEIRA M, et al. Intercomparison of soil moisture retrieved from GNSS-R and from passive L-band radiometry at the Valencia anchor station[J]. Sensors (Basel, Switzerland), 2019, 19(8): 1900. doi: 10.3390/s19081900
    [5] CLARIZIA M P, RUF C S, JALES P, et al. Spaceborne GNSS-R minimum variance wind speed estimator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6829-6843. doi: 10.1109/TGRS.2014.2303831
    [6] VALENCIA E, ZAVOROTNY V U, AKOS D M, et al. Using DDM asymmetry metrics for wind direction retrieval from GPS ocean-scattered signals in airborne experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 3924-3936. doi: 10.1109/TGRS.2013.2278151
    [7] GLEASON S, RUF C, CLARIZIA M P, et al. Calibration and unwrapping of the normalized scattering cross section for the cyclone global navigation satellite system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2495-2509. doi: 10.1109/TGRS.2015.2502245
    [8] 骆黎明, 白伟华, 孙越强. 基于树模型机器学习方法的GNSS-R海面风速反演[J]. 空间科学学报, 2020, 40(4): 595-601.

    LUO L M, BAI W H, SUN Y Q. GNSS-R sea surface wind speed retrieval based on tree model machine learning method[J]. Journal of Space Science, 2020, 40(4): 595-601(in Chinese).
    [9] CARDELLACH E, NAN Y, LI W. Variational retrievals of high winds using uncalibrated CyGNSS observables[J]. Remote Sensing, 2020, 12(23): 3930. doi: 10.3390/rs12233930
    [10] SAÏD F, JELENAK Z, PARK J, et al. The NOAA track-wise wind retrieval algorithm and product assessment for CyGNSS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-24.
    [11] GLEASON S. Level 1B DDM calibration : 148-0137[R]. Washington, D. C. : NASA, 2020.
    [12] LI X, MECIKALSKI J R, LANG T J. A study on assimilation of CYGNSS wind speed data for tropical convection during 2018 January MJO[J]. Remote Sensing, 2020, 12(8): 1243. doi: 10.3390/rs12081243
    [13] ZHANG Y, YIN J, YANG S, et al. High wind speed retrieval model of CYGNSS sea surface data based on machine learning[J]. Remote Sensing, 2021, 13(16): 3324. doi: 10.3390/rs13163324
    [14] RUF C, CHANG P, CLARIZIA M P, et al. CYGNSS handbook[M]. Ann Arbor: Michigan Publishing, 2016.
    [15] HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 hourly data on single levels from 1940 to present[EB/OL]. (2018-10-23)[2022-04-01]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form.
    [16] ROSKA T, CHUA L O. The CNN universal machine: An analogic array computer[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2015, 40(3): 163-173.
    [17] 徐嘉兴, 李钢, 陈国良. 基于logistic回归模型的矿区土地利用演变驱动力分析[J]. 农业工程学报, 2012, 28(20): 247-255.

    XU J X, LI G, CHEN G L. Analysis of driving force of land use evolution in mining area based on logistic regression model[J]. Chinese Journal of Agricultural Engineering, 2012, 28(20): 247-255(in Chinese).
    [18] 张增伟, 吴萍. 基于朴素贝叶斯算法的改进遗传算法分类研究[J]. 计算机工程与设计, 2012, 33(2): 750-753.

    ZHANG Z W, WU P. Research on classification of improved genetic algorithm based on naive Bayes algorithm[J]. Computer Engineering and Design, 2012, 33(2): 750-753(in Chinese).
    [19] ALIMJAN G, SUN T L, LIANG Y, et al. A new technique for remote sensing image classification based on combinatorial algorithm of SVM and KNN[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(7): 1859012. doi: 10.1142/S0218001418590127
    [20] BOLLWEIN F, WESTPHAL S. A branch & bound algorithm to determine optimal bivariate splits for oblique decision tree induction[J]. Applied Intelligence, 2021, 51: 7552-7572.
    [21] ALIMJAN G, SUN T L, JUMAHUN H, et al. A hybrid classification approach based on support vector machine and K-nearest neighbor for remote sensing data[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(10): 1750034. doi: 10.1142/S0218001417500343
    [22] BALASUBRAMANIAM R, RUF C. Neural network based quality control of CYGNSS wind retrieval[J]. Remote Sensing, 2020, 12(17): 2859. doi: 10.3390/rs12172859
    [23] SUN X K, LIU L, LI C F, et al. Classification for remote sensing data with improved CNN-SVM method[J]. IEEE Access, 2019, 7: 164507-164516. doi: 10.1109/ACCESS.2019.2952946
    [24] RUF C, GLEASON S, MCKAGUE D. Assessment of CYGNSS wind speed retrieval uncertainty[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(1): 87-97.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  75
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-06-11
  • 网络出版日期:  2022-07-27
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答