留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于预设性能的飞机全电刹车系统滑模控制

谢明军 段京奇 马文冉 贾玉红

谢明军,段京奇,马文冉,等. 基于预设性能的飞机全电刹车系统滑模控制[J]. 北京航空航天大学学报,2024,50(1):260-267 doi: 10.13700/j.bh.1001-5965.2022.0229
引用本文: 谢明军,段京奇,马文冉,等. 基于预设性能的飞机全电刹车系统滑模控制[J]. 北京航空航天大学学报,2024,50(1):260-267 doi: 10.13700/j.bh.1001-5965.2022.0229
XIE M J,DUAN J Q,MA W R,et al. Sliding mode control for electric braking systems of aircraft based on prescribed performance[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):260-267 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0229
Citation: XIE M J,DUAN J Q,MA W R,et al. Sliding mode control for electric braking systems of aircraft based on prescribed performance[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):260-267 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0229

基于预设性能的飞机全电刹车系统滑模控制

doi: 10.13700/j.bh.1001-5965.2022.0229
详细信息
    通讯作者:

    E-mail:jiayuhong@buaa.edu.cn

  • 中图分类号: V221.3;TB553

Sliding mode control for electric braking systems of aircraft based on prescribed performance

More Information
  • 摘要:

    针对飞机全电防滑刹车系统具有较强的非线性特征,以及机电作动器(EMA)中存在的干扰不利于系统稳定性,提出一种有限时间预设性能反演滑模控制方法。在合理简化的基础上,建立含滑移率子系统和EMA子系统的飞机全电防滑刹车系统的数学模型,并引入有限时间预设性能函数;利用预设性能反演控制方法设计滑移率控制器,获得参考刹车压力控制率,保证滑移率跟踪误差在有限时间内收敛到预设范围内;为跟踪参考刹车压力,利用非奇异终端滑模控制方法设计EMA控制器,针对EMA中存在的干扰,设计扩张状态观测器估计,并在控制器中进行补偿,提高控制器的鲁棒性和控制精度;通过干跑道和冰跑道2种情况下的数值仿真验证所提方法控制效果。

     

  • 图 1  飞机地面滑跑受力分析

    Figure 1.  Analysis of force on aircraft during ground running

    图 2  飞机机轮受力分析

    Figure 2.  Analysis of force on aircraft wheel

    图 3  $\mu \text{-} \lambda $曲线

    Figure 3.  $\mu \text{-} \lambda $ curves

    图 4  预设性能函数历时曲线

    Figure 4.  Duration curves of prescribed performance functions

    图 5  全电飞机防滑刹车系统控制结构

    Figure 5.  Structure of electric antiskid braking system of aircraft

    图 6  干扰观测仿真结果

    Figure 6.  Simulation results of disturbance observation

    图 7  不同跑道下滑移率误差仿真结果

    Figure 7.  Simulation results of slip ratio error in different runways

    图 8  不同跑道下飞机速度和机轮速度仿真结果

    Figure 8.  Simulation results of aircraft velocity and wheel velocity in different runways

    图 9  不同跑道下滑移率仿真结果

    Figure 9.  Simulation results of slip ratio in different runways

    表  1  Pacejka模型参数

    Table  1.   Pacejka model parameters

    跑道状态 D C B
    干跑道 0.8 1.534 4 14.0326
    湿跑道 0.4 2.019 2 8.2098
    冰跑道 0.2 2.087 5 7.2018
    下载: 导出CSV
  • [1] 李繁飙, 黄培铭, 阳春华, 等. 基于非线性干扰观测器的飞机全电刹车系统滑模控制设计[J]. 自动化学报, 2021, 47(11): 2557-2569.

    LI F B, HUANG P P, YANG C H, et al. Sliding mode control design of aircraft electric brake system based on nonlinear disturbance observer[J]. Acta Automatica Sinica, 2021, 47(11): 2557-2569(in Chinese).
    [2] 付龙飞. 飞机防滑刹车系统的非线性控制技术应用研究 [D]. 西安: 西北工业大学, 2017.

    FU L F. Research on application of nonlinear control technology in aircraft anti-skid braking system [D]. Xi’an: Northwestern Polytechnical University, 2017(in Chinese).
    [3] 陈晓雷, 林辉, 李兵强, 等. 飞机全电刹车系统滑移率约束反演滑模控制[J]. 上海交通大学学报, 2015, 49(12): 1855-1861.

    CHEN X L, LIN H, LI B Q, et al. Backstepping sliding mode control for aircraft electric braking systems with slip ratio constraint[J]. Journal of Shanghai Jiao Tong University, 2015, 49(12): 1855-1861(in Chinese).
    [4] 付龙飞, 田广来, 王鹏, 等. 飞机防滑刹车系统滑移率自适应滑模控制研究[J]. 西北工业大学学报, 2015, 33(5): 770-774.

    FU L F, TIAN G L, WANG P, et al. Adaptive sliding mode control strategy for the aircraft antiskid braking system based on slip ratio[J]. Journal of Northwestern Polytechnical University, 2015, 33(5): 770-774(in Chinese).
    [5] 韩伟健. 飞机全电刹车机电作动系统的建模与控制方法研究 [D]. 西安: 西北工业大学, 2015.

    HAN W J. Research on modeling and control method of electro-mechanical actuating system of aircraft electric brake [D]. Xi’an: Northwestern Polytechnical University, 2015(in Chinese).
    [6] 杜成林. 飞机防滑刹车系统变结构控制研究 [D]. 沈阳: 东北大学, 2008.

    DU C L. Research on variable structure control of aircraft anti-skid brake system [D]. Shenyang: Northeastern University, 2008(in Chinese).
    [7] 田广来, 谢利理, 岳开宪, 等. 飞机防滑刹车系统的最佳滑移率式控制方法研究[J]. 航空学报, 2005, 26(4): 461-464.

    TIAN G L, XIE L L, YUE K X, et al. Study on optimal control method of an aircraft anti-skid braking system based on slip-ratio[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 461-464(in Chinese).
    [8] 何恒, 吴瑞祥. 改进的 BP 神经网络在飞机防滑刹车系统的应用[J]. 北京航空航天大学学报, 2004, 30(6): 561-564.

    HE H, WU R X. Improved BP neural network in design of aircraft antiskid braking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(6): 561-564(in Chinese).
    [9] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. doi: 10.1109/TAC.2008.929402
    [10] TAN J, DONG Y F, SHAO P Y, et al. Anti-saturation adaptive fault-tolerant control with fixed-time prescribed performance for UAV under AOA asymmetric constraint[J]. Aerospace Science and Technology, 2022, 120: 107264. doi: 10.1016/j.ast.2021.107264
    [11] ZHUANG M L, TAN L G, LI K H, et al. Fixed-time formation control for spacecraft with prescribed performance guarantee under input saturation[J]. Aerospace Science and Technology, 2021, 119: 107176. doi: 10.1016/j.ast.2021.107176
    [12] ZHOU T, LIU C, LIU X, et al. Finite-time prescribed performance adaptive fuzzy control for unknown nonlinear systems[J]. Fuzzy Sets and Systems, 2021, 402: 16-34. doi: 10.1016/j.fss.2020.03.010
    [13] ZHANG X, LIN H. Backstepping fuzzy sliding mode control for the antiskid braking system of unmanned aerial vehicles[J]. Electronics, 2020, 9(10): 1731. doi: 10.3390/electronics9101731
    [14] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning [C]//Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 4989-4996.
    [15] 孙辉, 闫建国, 屈耀红. 输入输出受限的无人机防滑刹车系统容错控制[J]. 北京航空航天大学学报, 2017, 43(6): 1132-1140. doi: 10.13700/j.bh.1001-5965.2016.0438

    SUN H, YAN J G, QU Y H. Fault-tolerant control of UAV anti-skid braking system with input and output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1132-1140(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0438
    [16] 陈晓雷, 林辉, 马冬麒. 无人机全电式自主刹车系统滑模极值搜索控制[J]. 控制理论与应用, 2015, 32(11): 1439-1448.

    CHEN X L, LIN H, MA D L. Sliding-mode extremum-seeking control for all-electric active braking system in unmanned aerial vehicle[J]. Control Theory & Applications, 2015, 32(11): 1439-1448(in Chinese).
    [17] LIANG B, ZHU Y Q, LI Y R, et al. Adaptive nonsingular fast terminal sliding mode control for braking systems with electro-mechanical actuators based on radial basis function[J]. Energies, 2017, 10(10): 1637. doi: 10.3390/en10101637
    [18] 冯勇, 鲍晟, 余星火. 非奇异终端滑模控制系统的设计方法[J]. 控制与决策, 2002, 17(2): 194-198. doi: 10.3321/j.issn:1001-0920.2002.02.017

    FENG Y, BAO S, YU X H. Design method of non-singular terminal sliding mode control systems[J]. Control and Decision, 2002, 17(2): 194-198(in Chinese). doi: 10.3321/j.issn:1001-0920.2002.02.017
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  45
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-06-03
  • 网络出版日期:  2022-06-10
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答