留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月基装备行走运动学分析与连续步态规划

何天宇 董洋 檀傈锰 王岩 赵军鹏 王春洁

何天宇,董洋,檀傈锰,等. 月基装备行走运动学分析与连续步态规划[J]. 北京航空航天大学学报,2024,50(1):308-316 doi: 10.13700/j.bh.1001-5965.2022.0232
引用本文: 何天宇,董洋,檀傈锰,等. 月基装备行走运动学分析与连续步态规划[J]. 北京航空航天大学学报,2024,50(1):308-316 doi: 10.13700/j.bh.1001-5965.2022.0232
HE T Y,DONG Y,TAN L M,et al. Kinematic analysis and continuous gait planning of lunar-based equipment in walking state[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):308-316 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0232
Citation: HE T Y,DONG Y,TAN L M,et al. Kinematic analysis and continuous gait planning of lunar-based equipment in walking state[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):308-316 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0232

月基装备行走运动学分析与连续步态规划

doi: 10.13700/j.bh.1001-5965.2022.0232
基金项目: 国家自然科学基金(U2037602)
详细信息
    通讯作者:

    E-mail:zhaojunpeng@buaa.edu.cn

  • 中图分类号: V476.3;TH122

Kinematic analysis and continuous gait planning of lunar-based equipment in walking state

Funds: National Natural Science Foundation of China (U2037602)
More Information
  • 摘要:

    针对缓冲行走功能一体的月面探测器构型设计困难、步态分析复杂等问题,提出了一种基于相同支链构型的四足月基装备(LBE)设计分析方法与连续步态规划方案。设计复合功能着陆腿机构及整机多状态位姿;构建LBE在行走状态下的单腿运动学模型,对其进行正逆运动学求解,分析单腿与整机工作空间和运动性能;对LBE整机进行水平月面的连续步态规划,并设计单步足端轨迹,通过动力学仿真,验证LBE行走步态稳定性。仿真结果表明:LBE沿前进方向连续稳定运行,质心竖直方向浮动仅占整器高度的0.24%,俯仰角最大摆动幅度为0.34°,翻滚角最大摆动幅度为0.27°。

     

  • 图 1  缓冲行走一体式LBE构型

    Figure 1.  Buffering and walking integrated LBE configuration

    图 2  LBE工作状态

    Figure 2.  Working status of LBE

    图 3  单腿构型简图

    Figure 3.  Configuration sketch of single leg

    图 4  工作空间示意图

    Figure 4.  Workspace diagram

    图 5  单腿旋量系

    Figure 5.  Single-legged spinning gauge system

    图 6  单腿可操作度

    Figure 6.  Operability of single leg

    图 7  步态示意图

    Figure 7.  Gait diagram

    图 8  单腿四向足端相对主体运动范围

    Figure 8.  Four direction motion range of foot pad relative to main body

    图 9  工作空间中的足端轨迹

    Figure 9.  Foot pad trajectory in workspace

    图 10  步态仿真图

    Figure 10.  Gait simulation diagram

    表  1  LBE单腿单支链改进DH参数

    Table  1.   Improved DH parameter of single chain of single leg for LBE

    连杆k 转角${\phi _{k - 1}}$ 偏置${a_{k - 1}}$ 转角${\varphi _k}$ 偏置${d_k}$
    1 0 0 $ {\beta _i} $ 0
    2 0 ${r_i}$ 0 ${h_i}$
    3 $ \text{π} /2 $ 0 $ {\alpha _{{i}}} + {\theta _{i1}} $ 0
    4 0 $ {l_{i1}} $ $ {\theta _{i2}} $ 0
    5 $ {-}\text{π} /2 $ 0 $ {\theta _{i3}} $ 0
    6 0 $ {l_{i2}} $ 0 0
    下载: 导出CSV

    表  2  支链构型参数

    Table  2.   Configuration parameters of branched chain

    支链 $ \alpha $/(°) $ \beta $/(°) $r$/m $h$/m $ {l_1} $/m $ {l_2} $/m
    主支链 36.87 0 0.07 0.415 0.2 0.6
    左支链 0 −90 0.125 0.415 0.2 0.35
    右支链 0 90 0.125 0.415 0.2 0.35
    下载: 导出CSV
  • [1] 孙俊凯, 孙泽洲, 辛鹏飞, 等. 深空着陆探测足式机器人发展综述[J]. 中国机械工程, 2021, 32(15): 1765-1775.

    SUN J K, SUN Z Z, XIN P F, et al. Review on development of legged robots for deep space landing exploration[J]. China Mechanical Engineering, 2021, 32(15): 1765-1775(in Chinese).
    [2] 张志贤, 梁鲁, 果琳丽, 等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天, 2016, 22(2): 202-209.

    ZHANG Z X, LIANG L, GUO L L, et al. Conceptual design of manned lunar lander with wheel-legged mobile system[J]. Manned Spaceflight, 2016, 22(2): 202-209(in Chinese).
    [3] 路达, 刘金国, 高海波. 星球表面着陆巡视一体化探测机器人研究进展[J]. 航空学报, 2021, 42(1): 100-116.

    LU D, LIU J G, GAO H B. Integrated exploration robots for planetary surface landing and patrolling: A review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 100-116(in Chinese).
    [4] BIRCKENSTAEDT B, HOPKINS J, KUTTER B, et al. Lunar lander configurations incorporating accessibility, mobility, and centaur cryogenic propulsion experience: AIAA 2006-7284[R]. Reston: AIAA, 2006.
    [5] HOWE A S. A modular habitation system for human planetary and space exploration[C]//Proceedings of the 45th International Conference Environmental Systems. Emmaus: ICES, 2015.
    [6] 梁鲁, 张志贤, 果琳丽, 等. 可移动式月球着陆器在载人月球探测活动中的任务分析[J]. 载人航天, 2015, 21(5): 472-478.

    LIANG L, ZHAGN Z X, GUO L L, et al. Task analysis of mobile lunar lander in crewed lunar exploration missions[J]. Manned Spaceflight, 2015, 21(5): 472-478(in Chinese).
    [7] HUNG A, HOWE A S. A kit-of-parts approach to pressure vessels for planetary surface construction: AIAA 2003-6281[R]. Reston: AIAA, 2003.
    [8] LIN R F, GUO W Z. Novel design of a family of legged mobile lander[C]//Proceedings of the Intelligent Robotics and Applications. Berlin: Springer, 2017: 261-272.
    [9] LIN R F, GUO W Z, Chen X B, et al. Type synthesis of legged mobile landers with one passive limb using the singularity property[J]. Robotica, 2018, 36(12): 1-21.
    [10] LIN R F, GUO W Z. Novel design of a family of legged mobile landers based on decoupled landing and walking functions[J]. Journal of Mechanical Science and Technology, 2020, 34(9): 3815-3822. doi: 10.1007/s12206-020-0832-x
    [11] HAN Y C, GUO W Z, PENG Z K, et al. Dimensional synthesis of the reconfigurable legged mobile lander with multi-mode and complex mechanism topology[J]. Mechanism and Machine Theory, 2020, 155: 104097.
    [12] HAN Y C, GUO W Z. A computable framework to efficiently design both current and robotic legged landers for extraterrestrial exploration mission[J]. Journal of Mechanical Design, 2022, 144(1): 014501.
    [13] HAN Y C, GUO W Z, ZHAO D H, et al. Multi-mode unified modeling and operation capability synergistic evaluation for the reconfigurable legged mobile lander[J]. Mechanism and Machine Theory, 2022, 171: 104714. doi: 10.1016/j.mechmachtheory.2021.104714
    [14] 刘志, 周杰, 靳宗向, 等. 一种可行走的月球软着陆机构: CN104943875B[P]. 2016-11-23.

    LIU Z, ZHOU J, JIN Z X, et al. A walking lunar soft landing mechanism: CN104943875B[P]. 2016-11-23(in Chinese).
    [15] 杨建中, 高峰, 李新立, 等. 一种具有着陆缓冲功能的行走机器人: CN105127975B[P]. 2017-04-19.

    YANG J Z, GAO F, LI X L, et al. A kind of walking and buffering robot with landing function: CN105127975B[P]. 2017-04-19 (in Chinese).
    [16] 佟振鸣. 移动式着陆探测机器人构型设计与行走规划研究[D]. 上海: 上海交通大学, 2016: 15-49.

    TONG Z M. On configuration design and gait planning of mobile exploration lander[D]. Shanghai: Shanghai Jiaotong University, 2016: 15-49(in Chinese).
    [17] 高峰, 尹科, 孙乔, 等. 探月足式飞跃机器人设计与控制[J]. 飞控与探测, 2020, 3(4): 1-7.

    GAO F, YIN K, SUN Q, et al. Design and control of legged leaping robot in lunar exploration[J]. Flight Control & Detection, 2020, 3(4): 1-7(in Chinese).
    [18] 蔡旭. 轮腿式可重复着陆巡视机器人的机构设计与运动规划[D]. 上海: 上海交通大学, 2020: 23-33.

    CAI X. Mechanism design and motion planning of a wheel-legged repetitive landing inspection robot[D]. Shanghai: Shanghai Jiaotong University, 2020: 23-33(in Chinese).
    [19] 贾山, 周向华, 陈金宝, 等. 缓冲/行走一体化着陆器运动学研究与步态规划[J]. 宇航学报, 2021, 42(4): 467-476.

    JIA S, ZHOU X H, CHEN J B, et al. Kinematics research and gait planning of buffering/walking integrated lander[J]. Journal of Astronautics, 2021, 42(4): 467-476(in Chinese).
    [20] 周壮壮. 行走式着陆探测器复位机构故障状态下行走能力研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 13-20.

    ZHOU Z Z. Research on walking ability under the failure of reset mechanism of walking landing probe[D]. Harbin: Harbin Institute of Technology, 2020: 13-20(in Chinese).
    [21] JOSHI S A, TSAI L W. Jacobian analysis of limited-DOF parallel manipulators[J]. Journal of Mechanical Design, 2002, 124(2): 254-258. doi: 10.1115/1.1469549
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  31
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 录用日期:  2022-06-12
  • 网络出版日期:  2022-06-22
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答