留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升空平台相对测量误差对定位精度的影响及定位算法

欧阳晓凤 曾芳玲 吕大千 董天宝 韩宜静

欧阳晓凤,曾芳玲,吕大千,等. 升空平台相对测量误差对定位精度的影响及定位算法[J]. 北京航空航天大学学报,2024,50(1):187-197 doi: 10.13700/j.bh.1001-5965.2022.0240
引用本文: 欧阳晓凤,曾芳玲,吕大千,等. 升空平台相对测量误差对定位精度的影响及定位算法[J]. 北京航空航天大学学报,2024,50(1):187-197 doi: 10.13700/j.bh.1001-5965.2022.0240
OUYANG X F,ZENG F L,LYU D,et al. Positioning accuracy and localization algorithm with relative measurement errors in blast-off platforms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):187-197 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0240
Citation: OUYANG X F,ZENG F L,LYU D,et al. Positioning accuracy and localization algorithm with relative measurement errors in blast-off platforms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):187-197 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0240

升空平台相对测量误差对定位精度的影响及定位算法

doi: 10.13700/j.bh.1001-5965.2022.0240
详细信息
    通讯作者:

    E-mail:zella@ustc.edu

  • 中图分类号: TN953.7

Positioning accuracy and localization algorithm with relative measurement errors in blast-off platforms

More Information
  • 摘要:

    针对精准协同任务下的分布式升空平台高精度相对定位需求,基于超宽带(UWB)测距传感器研究了相对测距与定位模型,对UWB模块在非理想情况下存在的误差因素进行了推导分析,包括天线相位中心误差、测距刷新率和悬停稳定度。在此基础上对噪声成分进行了实测分析与滤波处理:通过Allan方差辨识UWB传感器噪声,并将有色噪声模型及估计参数引入到定位算法量测更新中,通过改进扩展卡尔曼滤波算法实现了分布式升空平台相对定位。仿真结果表明:在相对测量噪声服从非高斯分布情况下,所提算法相较于传统算法位置估计精度提高约23.43%。与传统算法相比,所提算法可减少测量色噪声影响,提高卫星导航拒止环境下的相对定位精度。

     

  • 图 1  分布式升空平台相对定位原理

    Figure 1.  Simplified relative motion model of distributed blast-off platform

    图 2  TW-TOF测量原理及信号波形

    Figure 2.  Measuring principle and signal waveform of TW-TOF

    图 3  双平台测量天线空间关系

    Figure 3.  Geometric relationship between two-platform measuring antennas

    图 4  位置估计误差与测距刷新率、相对速度的关系

    Figure 4.  Relationship of position estimation error with ranging refresh rate and relative velocity

    图 5  悬停稳定度测试场景

    Figure 5.  Test scenario of hovering stability

    图 6  悬停稳定度对UWB测距误差的影响

    Figure 6.  Effect of hovering stability on UWB ranging bias

    图 7  UWB实测数据Allan方差分析(与白噪声理论值对比)

    Figure 7.  Allan plots of analysis UWB measurements (compared with theoretical values under white noise)

    图 8  实测数据与模拟数据的Allan方差分析

    Figure 8.  Allan variance analysis of data measurements and simulation

    图 9  算法复杂度分析

    Figure 9.  Complexity analysis of proposed algorithm

    图 10  升空平台运动特征仿真

    Figure 10.  Simulation of motion characteristics of blast-off platform

    图 11  分布式升空平台定位误差分析

    Figure 11.  Position error analysis of distributed blast-off platforms

    表  1  基于UWB实测数据的Allan方差随机模型参数

    Table  1.   Parameters of Allan variance random model based on measured UWB data

    距离/cm $ {\sigma _N} $ B W $ \sigma_{\mu} $
    2500 (LOS) 0.351 0.721 0.543 2.63
    3000 (LOS) 0.812 0.564 0.471 4.10
    3500 (LOS) 0.637 0.356 0.738 2.85
    4000(LOS) 0.545 0.417 0.791 3.96
    4500 (LOS) 0.592 0.458 0.427 2.78
    5000 (LOS) 0.679 0.673 0.501 3.26
    5000(NLOS) 0.609 0.232 1.569 4.76
    下载: 导出CSV

    表  2  仿真参数设置

    Table  2.   Simulation parameters

    参 数 数 值
    陀螺仪测量误差/ (°) N(0.001,0.001)
    加速度计测量误差/(m·s−2) N(0.001,0.003)
    磁力计测量误差/(°) N(0.02,0.05)
    四元数运动模型噪声协方差 0.01
    位置过程噪声协方差/m 1
    角速率过程噪声协方差/(rad·s−1) 10−6
    线加速度过程噪声协方差/(rad·s−2) 10−6
    下载: 导出CSV
  • [1] FOX N. Precision electronic warfare (PREW): BAA 09-65 [R]: Arlington Strategic Technology Office of the US Dedense Advanced Research Projects Agency, 2009: 5-32.
    [2] 李磊, 王彤, 蒋琪. 美国CODE项目推进分布式协同作战发展[J]. 无人系统技术, 2018, 1(3): 59-66.

    LI L, WANG T, JIANG Q. DARPA CODE program promotes the development of distributed collaborative operations[J]. Unmanned Systems Technology, 2018, 1(3): 59-66 (in Chinese).
    [3] 臧会凯, 雷欢, 但晓东, 等. 分布式雷达相参发射原理与性能分析[J]. 电子与信息学报, 2015, 37(8): 1801-1807.

    ZANG H K, LEI H, DAN X D, et al. Theory and performance analysis of coherent transmission for distributed radars[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1801-1807(in Chinese).
    [4] GOEL S, KEALY A, GIKAS V, et al. Cooperative localization of unmanned aerial vehicles using GNSS, MEMS inertial, and UWB sensors[J]. Journal of Surveying Engineering, 2017, 143(4): 04017007. doi: 10.1061/(ASCE)SU.1943-5428.0000230
    [5] 王均晖, 孙蕊, 程琦, 等. 无人机组合导航直接法与间接法滤波方式比较[J]. 北京航空航天大学学报, 2020, 46(11): 2156-2167. doi: 10.13700/j.bh.1001-5965.2019.0578

    WANG J H, SUN R, CHENG Q, et al. Comparison of direct and indirect filtering modes for UAV integrated navigation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2156-2167(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0578
    [6] LIU C, PRIOR S D , TEACY W L, et al. Computationally efficient visual-inertial sensor fusion for global positioning system-denied navigation on a small quadrotor[J]. Advances in Mechanical Engineering, 2016, 8(3): 1687-1698.
    [7] KOPPANYI Z, TOTH C K. INDOOR Ultra-wide band nerwork adjustment using maximum likelihood estimation[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2014, 2(1): 31-35.
    [8] JOHNSON J, DEWBERRY B. Ultra-wideband aiding of GPS for quick deployment of anchors in a GPS-denied ad-hoc sensor tracking and communication system[C]//Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011). Washington: The Institute of Navigation, 2011: 3959-3966.
    [9] DIERENBACH K, OSTROWSKI S, JOZKOW G, et al. UWB for navigation in GNSS compromised environments[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015). Washington: The Institute of Navigation, 2015: 2380-2389.
    [10] 熊骏, 熊智, 于永军, 等. UWB辅助的无人机近距离编队相对导航方法[C]// 中国惯性技术学会高端前沿专题学术会议论文集. 2017: 254-263.

    XIONG J, XIONG Z, YU Y J, et al. Relative navigation algorithm for UAV close-formation flight aided by UWB[C]// Proceedings of the High-end Frontier Academic Conference of China Inertial Technology Society. 2017: 254-263 (in Chinese).
    [11] QUERALTA J P, AlMANSA C M, SCHIANO F, et al. Uwb-based system for UAV localization in gnss-denied environments: Characterization and dataset[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 4521-4528.
    [12] SHULE W, ALMANSA C M, QUERALTA J P, et al. Uwb-based localization for multi-uav systems and collaborative heterogeneous multi-robot systems[J]. Procedia Computer Science, 2020, 175: 357-364.
    [13] GROBWINDHAGER B, BOANO C A, RATH M, et al. Enabling runtime adaptation of physical layer settings for dependable UWB communications[C]//2018 IEEE 19th International Symposium on" A World of Wireless, Mobile and Multimedia Networks". Piscataway, IEEE Press, 2018: 1-11.
    [14] DING W D, WANG J L, RIZOS C, et al. Improving adaptive Kalman estimation in GPS/INS integration[J]. Journal of Navigation, 2007, 60(3): 517-529. doi: 10.1017/S0373463307004316
    [15] LIU R, LIU F, LIU C, et al. Modified Sage-Husa adaptive Kalman filter-based SINS/DVL integrated navigation system for AUV[J]. Journal of Sensors, 2021, 2021: 9992041.
    [16] BOARD I S. IEEE standard definitions of physical quantities for fundamental frequency and time metrology-random instabilities: 1139-2008[S]. Piscataway: IEEE Press, 2008: 5-36.
    [17] VIG J R, FERRE-PIKAL E S, CAMPARO J C, et al. IEEE standard definitions of physical quantities for fundamental frequency and time metrology-random instabilities[S]. Piscataway: IEEE, 1999: 1139-1999.
    [18] HUANG Y, HUA L, WANG Q, et al. Visible light positioning and navigation using noise measurement and mitigation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11094-11106. doi: 10.1109/TVT.2019.2943517
    [19] CHANG G. On Kalman filter for linear system with colored measurement noise[J]. Journal of Geodesy, 2014, 88(12): 1163-1170. doi: 10.1007/s00190-014-0751-7
    [20] DEMARCO K , SQUIRES E , DAY M , et al. Simulating collaborative robots in a massive multi-agent game environment (SCRIMMAGE)[C]//Springer Proceedings in Advanced Robotics. Switzerland, AJ: Springer Nature, 2019: 283-291.
    [21] PALA S , JAYAN S , KURUP D G. An accurate UWB based localization system using modified leading edge detection algorithm[J]. Ad Hoc Networks, 2020, 97: 102017
    [22] 李荣冰, 王念曾, 刘建业, 等. 面向相对导航的UWB测距误差估计与补偿方法[J]. 仪器仪表学报, 2019, 40(5): 28-35.

    LI R B, WANG N C, LIU J Y, et al. UWB ranging error estimation and compensation method for relative navigation[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 28-35 (in Chinese).
    [23] MIHAI I V, TAMAS R, SHARAIHA A. An UWB physical optics approach for Fresnel-zone RCS measurements on a complex target at non-normal incidence[J]. Sensors, 2019, 19(24): 5454-5470. doi: 10.3390/s19245454
    [24] GUO K, QIU Z, MIAO C, et al. Ultra-wideband-based localization for quadcopter navigation[J]. Unmanned Systems, 2016, 4(1): 23-34. doi: 10.1142/S2301385016400033
    [25] ZHOU J M. A design of micro-strip antenna in the RFID system and UWB system[J]. Recent Advances in Electrical & Electronic Engineering, 2016, 9(2): 119-123.
    [26] 崔正阳, 王勇. 无人机固定时间路径跟踪容错制导控制[J]. 北京航空航天大学学报, 2021, 47(8): 1619-1627

    CUI Z Y, WANG Y. Fault-tolerant fixed-time path following guidance control of UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1619-1627(in Chinese).
    [27] 匡银虎, 张虹波. 多旋翼无人飞行器悬停姿态精确控制仿真研究[J]. 计算机仿真, 2018, 35(3): 34-37. doi: 10.3969/j.issn.1006-9348.2018.03.008

    KUANG Y H, ZHANG H B. Simulation study on accurate control of hovering attitude of multi-rotor unmanned aerial vehicle[J]. Compute Simulation, 2018, 35(3): 34-37 (in Chinese). doi: 10.3969/j.issn.1006-9348.2018.03.008
    [28] 张奇. 一种飞行器悬停功能稳定性测试方法和系统: CN106742051A[P]. 2017-05-31.

    ZHANG Q. Aircraft hovering function stability testing method and system: CN106742051A[P]. 2017-05-31(in Chinese).
    [29] MCGUIRE K, DE CROON G, DE WAGTER C, et al. Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 1070-1076. doi: 10.1109/LRA.2017.2658940
    [30] 耿梦梦, 任元, 樊亚洪, 等. MSCSG随机误差测试及误差源分析[J]. 北京航空航天大学学报, 2021, 47(8): 1697-1704. doi: 10.13700/j.bh.1001-5965.2020.0269

    GENG M M, REN Y, FAN Y H, et al. Random error test and error source analysis of MSCSG[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1697-1704(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0269
    [31] BROWN R G, HWANG P Y C. Introduction to random signals and applied Kalman filtering with Matlab exercises and solutions[M]. Hoboken: John Wiley & Sons, Inc., 1996: 87-125.
    [32] HUNGER R. Floating point operations in matrix-vector calculus[M]. Munich: Munich University of Technology, Inst. for Circuit Theory and Signal Processing, 2005.
    [33] 张召友. 非线性Bayesian滤波及其在SINS/GPS紧耦合导航中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.

    ZHANG S Y. Research on nonlinear Bayesian filtering and its application for SINS/GPS tightly coupled navigation[D]. Harbin :Harbin Engineering University, 2014(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  37
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-06-16
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答