留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低轨互联网星座发展研究

吴树范 王伟 温济帆 吴岳东

吴树范,王伟,温济帆,等. 低轨互联网星座发展研究[J]. 北京航空航天大学学报,2024,50(1):1-11 doi: 10.13700/j.bh.1001-5965.2022.0242
引用本文: 吴树范,王伟,温济帆,等. 低轨互联网星座发展研究[J]. 北京航空航天大学学报,2024,50(1):1-11 doi: 10.13700/j.bh.1001-5965.2022.0242
WU S F,WANG W,WEN J F,et al. Review on development of LEO Internet constellation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):1-11 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0242
Citation: WU S F,WANG W,WEN J F,et al. Review on development of LEO Internet constellation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):1-11 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0242

低轨互联网星座发展研究

doi: 10.13700/j.bh.1001-5965.2022.0242
基金项目: 国家自然科学基金(11902175,U20B2056)
详细信息
    通讯作者:

    E-mail:wangwei215661@sjtu.edu.cn

  • 中图分类号: V221+.3;TB553

Review on development of LEO Internet constellation

Funds: National Natural Science Foundation of China (11902175,U20B2056)
More Information
  • 摘要:

    近年来,随着互联网用户激增, SpaceX、OneWeb等创新型企业纷纷计划打造低轨互联网星座,引发全球低轨卫星互联网星座的发展热潮。因此,研究国内外低轨互联网星座的发展情况及当前面临的技术难题有着很重要的意义。基于此,介绍了国外具有代表性的3个低轨互联网星座计划(Starlink、OneWeb、Lightspeed)及国内星座的最新发展情况;根据低轨互联网星座的特点,着重分析了低轨互联网星座面临的五大技术挑战:星座相对运动演化预报、星座自主导航与定轨、星座构型重构的路径规划、星座自组织协同构型控制、星座通信与网络服务;根据当前低轨互联网星座的发展趋势,对中国在低轨互联网星座的发展给出了建议。

     

  • 图 1  Starlink星座[1]

    Figure 1.  Starlink constellation[1]

    图 2  OneWeb星座[4]

    Figure 2.  OneWeb constellation[4]

    图 3  Lightspeed星座[6]

    Figure 3.  Lightspeed constellation[6]

    表  1  国内代表性低轨互联网星座

    Table  1.   Representative LEO Internet constellations in China

    单位卫星星座卫星数量/颗已发射卫星
    数量/颗
    中国航天科技集团公司鸿雁星座3001
    中国航天科工集团有限公司虹云工程1561
    中国航天科工集团有限公司行云工程802
    中国电子科技集团有限公司天象星座1202
    银河航天(北京)科技有限公司银河5G6501
    北京未来导航科技有限公司微厘空间1201
    下载: 导出CSV

    表  2  “GW”星座构型分布[6]

    Table  2.   “GW” constellation configuration distribution[6]

    星座
    计划
    星座
    子计划
    轨道
    高度/km
    轨道
    倾角/(°)
    轨道面
    卫星数
    轨道面 卫星
    总数/颗
    GW-A59
    星座
    GW-A59/15908516306080
    GW-A59/2600504050
    GW-A59/3508556060
    GW-2
    星座
    GW-2/111453048366912
    GW-2/21145404836
    GW-2/31145504836
    GW-2/41145604836
    下载: 导出CSV
  • [1] 徐冰玉, 李侠宇. Starlink低轨卫星通信星座深度分析[J]. 信息通信技术与政策, 2021, 47(9): 16-20.

    XU B Y, LI X Y. In-depth analysis of the satellite constellation Starlink[J]. Information and Communications Technology, 2021, 47(9): 16-20(in Chinese).
    [2] 杨文翰, 花国良, 冯岩, 等. 星链计划卫星网络资料申报情况分析[J]. 天地一体化信息网络, 2021, 2(1): 60-68.

    YANG W H, HUA G L, FENG Y, et al. Analysis of the Starlink satellite network filing application[J]. Space-Integrated-Ground Information Networks, 2021, 2(1): 60-68(in Chinese).
    [3] CLARK S. SpaceX launches 25th mission for Starlink Internet network[EB/OL]. (2021-03-24)[2022-04-01]. https://spaceflightnow.com/2021/03/24/spacex-launches-25th-mission-to-build-out-starlink-internet-network/.
    [4] PORTILLO I D, CAMERON B G, CRAWLEY E F. A technical comparison of three low Earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159: 123-135.
    [5] OneWeb. OneWeb secures investment from SoftBank and Hughes network systems[EB/OL]. (2021-01-15) [ 2022-04-01]. https://oneweb.net/media-center/oneweb-secures-investment-from-softbank-and-hughes-network-systems.
    [6] 阮永井, 胡敏, 云朝明. 低轨互联网星座构型设计与控制研究进展与展望[J]. 中国空间科学技术, 2022, 42(1): 1-15

    RUAN Y J, HU M, YUN C M. Advances and prospects of the configuration design and control research of the LEO mega-constellations[J]. Chinese Space Science and Technology, 2022, 42(1): 1-15(in Chinese).
    [7] SCHWEIGHART S A, SEDWICK R J. High-fidelity linearized J2 model for satellite formation flight[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(6): 1073-1080. doi: 10.2514/2.4986
    [8] ALFRIEND K T, VADALI S R, GURFIL P, et al. Spacecraft formation flying: Dynamics, control and navigation[M]. Amsterdam: Elsevier, 2009.
    [9] SCHAUB H. Relative orbit geometry through classical orbit element differences[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 839-848. doi: 10.2514/1.12595
    [10] SCHAUB H, ALFRIEND K T. J2 invariant relative orbits for spacecraft formations[J]. Celestial Mechanics and Dynamical Astronomy, 2001, 79(2): 77-95. doi: 10.1023/A:1011161811472
    [11] KOENIG A W, GUFFANTI T, DAMICO S. New state transition matrices for relative motion of spacecraft formations in perturbed orbits[C]//Proceedings of the Astrodynamics Specialist Conference. Reston: AIAA, 2016: 13-16.
    [12] XU G Y, WANG D W. Nonlinear dynamic equations of satellite relative motion around an oblate earth[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1521-1524. doi: 10.2514/1.33616
    [13] JONES B A, WEISMAN R. Multi-fidelity orbit uncertainty propagation[J]. Acta Astronautica, 2019, 155: 406-417. doi: 10.1016/j.actaastro.2018.10.023
    [14] CARLO M D, MARTIN J M R, VASILE M. CAMELOT: Computational-analytical multi-fidelity low-thrust optimisation tool-box[J]. CEAS Space Journal, 2018, 10: 25-36. doi: 10.1007/s12567-017-0172-6
    [15] TOAL D J J. Some considerations regarding the use of multi fidelity Kriging in the construction of surrogate models[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1223-1245. doi: 10.1007/s00158-014-1209-5
    [16] VIRGILI B B, DOLADO J C, LEWIS H G, et al. Risk to space sustainability from large constellations of satellites[J]. Acta Astronautica, 2016, 126: 154-162. doi: 10.1016/j.actaastro.2016.03.034
    [17] ALFANO S, OLTROGGE D. Probability of collision: Valuation, variability, visualization, and validity[J]. Acta Astronautica, 2018, 148: 301-316. doi: 10.1016/j.actaastro.2018.04.023
    [18] NEWMAN L, FRIGM R C, DUNCAN M G, et al. Evolution and implementation of the NASA robotic conjunction assessment risk analysis concept of operations[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Red Hook: Curran Associates, Inc. , 2014.
    [19] HOU L Q, CAI Y L, LIU J, et al. Variable fidelity robust optimization of pulsed laser orbital debris removal under epistemic uncertainty[J]. Advances in Space Research, 2016, 57(8): 1698-1714. doi: 10.1016/j.asr.2015.12.003
    [20] HOU L Q, CAI Y L, ZHANG R Z, et al. Robust design of Mars entry micro-probe with evidence theory and multi-fidelity strategies[J]. Engineering Computations, 2014, 31(6): 1052-1073. doi: 10.1108/EC-08-2012-0188
    [21] 肖寅. 导航卫星自主导航关键技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2015.

    XIAO Y. Research on the key technology of automous navigation for navigation satellite[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics), 2015(in Chinese).
    [22] 陈金平, 焦文海, 马骏, 等. 基于星间测距/轨道定向参数约束的导航卫星自主定轨研究[J]. 武汉大学学报(信息科学版), 2005, 30(5): 439-443.

    CHEN J P, JIAO W H, MA J, et al. Autonav of navigation satellite constellation based on crosslink range and orientation parameters constraining[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 439-443(in Chinese).
    [23] 苏天祥, 文援兰, 蓝柏强, 等. 基于锚固站的导航星座分布式自主定轨研究[J]. 大地测量与地球动力学, 2014, 34(3): 111-115.

    SU T X, WEN Y L, LAN B Q, et al. Study on autonomous orbit determination of navigation constellation with distribution algorithm based on ground-based anchors[J]. Journal of Geodesy and Geodynamics, 2014, 34(3): 111-115(in Chinese).
    [24] 李琳琳, 孙辉先. 基于星敏感器的星光折射卫星自主导航方法研究[J]. 系统工程与电子技术, 2004, 26(3): 353-357.

    LI L L, SUN H X. Satellite autonomous navigation by stellar refraction based on a star sensor[J]. Systems Engineering and Electronics, 2004, 26(3): 353-357(in Chinese).
    [25] PSIAKI M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1285-1297. doi: 10.2514/1.47560
    [26] LI M Z, XU B, SUN J. Autonomous orbit determination for a hybrid constellation[J]. International Journal of Aerospace Engineering, 2018, 2018: 4843061.
    [27] 张艳. 基于星间观测的星座自主导航方法研究[D]. 长沙: 国防科技大学, 2005.

    ZHANG Y. Study on autonomous navigation of constellation using inter-satellite measurement[D]. Changsha: National University of Defense Technology, 2005(in Chinese).
    [28] FERGUSON P A. Distributed estimation and control technologies for formation flying spacecraft by Philip Andrew Ferguson[D]. Cambridge: Massachusetts Institute of Technology, 2003.
    [29] 刘伟平, 郝金明, 王智明. 几种LEO星载GNSS精密定轨方法的对比分析[J]. 测绘科学技术学报, 2014, 31(2): 140-144.

    LIU W P, HAO J M, WANG Z M. Comparison and analysis of some methods of LEO space-borne GNSS precise orbit determination[J]. Journal of Geomatics Science and Technology, 2014, 31(2): 140-144(in Chinese).
    [30] LEE S, PARK S Y. Approximate analytical solutions to optimal reconfiguration problems in perturbed satellite relative motion[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1097-1111. doi: 10.2514/1.52283
    [31] 潘迅, 泮斌峰, 唐硕. 考虑 J2项摄动的小推力燃料最优转移轨道设计[J]. 哈尔滨工业大学学报, 2017, 49(10): 15-21.

    PAN X, PAN B F, TANG S. Fuel-optimal low thrust trajectory design with J2 perturbation[J]. Journal of Harbin Institute of Technology, 2017, 49(10): 15-21(in Chinese).
    [32] WU B L, WANG D W, POH E K, et al. Nonlinear optimization of low-thrust trajectory for satellite formation: Legendre pseudo spectral approach[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1371-1381. doi: 10.2514/1.37675
    [33] 韩威华, 甘庆波, 王晓光, 等. 摄动情况下有限推力轨道转移与交会联合优化[J]. 系统工程与电子技术, 2013, 35(7): 1486-1491.

    HAN W H, GAN Q B, WANG X G, et al. Comprehensive optimi- zation for orbit transfer and rendezvous of finite thrust with perturbation[J]. Systems Engineering and Electronics, 2013, 35(7): 1486-1491(in Chinese).
    [34] HAN F, WANG Z, DUAN G R, et al. Trajectory plan for an ultra-short distance on-orbit service based on the Gaussian pseudo-spectral method[J/OL]. IEEE/CAA Journal of Automatica Sinica, 2018 (2018-02-13)[2022-04-01]. https://ieeexplore.ieee.org/document/8291087.
    [35] 武海雷, 韩飞, 贺亮, 等. 翻滚目标逼近的虚拟域逆动力学轨迹规划[J]. 控制理论与应用, 2018, 35(10): 1453-1461.

    WU H L, HAN F, HE L, et al. Trajectory planning based on inverse dynamics in virtual domain for approaching tumbling target[J]. Control Theory & Applications, 2018, 35(10): 1453-1461(in Chinese).
    [36] 王有亮. 卫星编队飞行相对轨迹优化与控制[D]. 北京: 中国科学院大学, 2018.

    WANG Y L. Relative trajectory optimization and control for satellite formation flying[D]. Beijing: University of Chinese Academy of Sciences, 2018(in Chinese).
    [37] MORGAN D, CHUNG S J, HADAEGH F Y. Spacecraft swarm guidance using a sequence of decentralized convex optimization: AIAA 2012-4583[R]. Reston: AIAA, 2012.
    [38] MORGAN D, CHUNG S, HADAEGH F Y, et al. Model predictive control of swarms of spacecraft using sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1725-1740. doi: 10.2514/1.G000218
    [39] FOUST R, CHUNG S J, FRED Y, et al. Solving optimal control with nonlinear dynamics using sequential convex programming: AIAA 2019-0652[R]. Reston: AIAA, 2019.
    [40] 黄海滨, 马广富, 庄宇飞, 等. 基于协同进化粒子群和Pareto最优解的卫星编队队形重构方法[J]. 航空学报, 2011, 32(11): 118-127.

    HUANG H B, MA G F, ZHUANG Y F, et al. Satellite formation reconfiguration using co-evolutionary particle swarm optimization and Pareto optimal solution[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 118-127(in Chinese).
    [41] 张磊, 田百义, 周文艳, 等. 木星系多目标探测轨道设计研究[J]. 航天器工程, 2018, 27(1): 31-36.

    ZHANG L, TIAN B Y, ZHOU W Y, et al. Research on Jovian system tour trajectory design[J]. Spacecraft Engineering, 2018, 27(1): 31-36(in Chinese).
    [42] 汉京滨, 张雅声, 汤亚锋, 等. 基于NSGA-Ⅱ的通信星座重构方法研究[J]. 兵器装备工程学报, 2019, 40(8): 74-79.

    HAN J B, ZHANG Y S, TANG Y F, et al. Research on reconstruction method of communication constellation based on NSGA-Ⅱ[J]. Journal of Ordnance Equipment Engineering, 2019, 40(8): 74-79(in Chinese).
    [43] SAVITRI T, KIM Y, JO S, et al. Satellite constellation orbit design optimization with combined genetic algorithm and semianalytical approach[J]. International Journal of Aerospace Engineering, 2017, 2017: 1235692.
    [44] 张敬, 吴美平, 付晓锋. 遗传算法在星座多星接近轨道优化中的应用[J]. 空间科学学报, 2012, 32(1): 99-105. doi: 10.11728/cjss2012.01.099

    ZHANG J, WU M P, FU X F. Genetic algorithm for orbital optimization to approach multiple constellation satellites[J]. Chinese Journal of Space Science, 2012, 32(1): 99-105(in Chinese). doi: 10.11728/cjss2012.01.099
    [45] PAEK S, KIM S, DE WECK O. Optimization of reconfigurable satellite constellations using simulated annealing and genetic algorithm[J]. Sensors, 2019, 19(4): 765. doi: 10.3390/s19040765
    [46] FAKOOR M, BAKHTIARI M, SOLEYMANI M. Optimal design of the satellite constellation arrangement reconfiguration process[J]. Advances in Space Research, 2016, 58(3): 372-386. doi: 10.1016/j.asr.2016.04.031
    [47] SOLEYMANI M, FAKOOR M, BAKHTIARI M. Optimal mission planning of the reconfiguration process of satellite constellations through orbital maneuvers: A novel technical framework[J]. Advances in Space Research, 2019, 63(10): 3369-3384. doi: 10.1016/j.asr.2019.02.003
    [48] KARAMAN S, FRAZZOLI E. Linear temporal logic vehicle routing with applications to multi-UAV mission planning[J]. International Journal of Robust and Nonlinear Control, 2011, 21(12): 1372-1395. doi: 10.1002/rnc.1715
    [49] RAMIREZ-ATENCIA C, BELLO-ORGAZ C, R-MORENO M D, et al. Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms[J]. Soft Computing, 2017, 21(17): 4883-4900. doi: 10.1007/s00500-016-2376-7
    [50] PENG H, LI C. Bound evaluation for spacecraft swarm on libration orbits with an uncertain boundary[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2690-2698. doi: 10.2514/1.G002549
    [51] MORGAN D, CHUNG S J. Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1492-1506. doi: 10.2514/1.55705
    [52] CHUNG S J, BANDYOPADHYAY S, CHANG I, et al. Phase synchronization control of complex networks of Lagrangian systems on adaptive digraphs[J]. Automatica, 2013, 49(5): 1148-1161. doi: 10.1016/j.automatica.2013.01.048
    [53] DANG Z, WANG Z K, ZHANG Y. Improved initialization conditions and single impulsive maneuvers for J2-invariant relative orbits[J]. Celestial Mechanics and Dynamical Astronomy, 2015, 121(3): 301-327. doi: 10.1007/s10569-014-9601-4
    [54] DANG Z, WANG Z K, ZHANG Y. Modeling and analysis of the bounds of periodical satellite relative motion[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1984-1998. doi: 10.2514/1.G000259
    [55] DANG Z, LI T, WANG Z, et al. Bounds on maximal and minimal distances for coplanar satellite relative motion under given initial conditions[J]. Aerospace Science and Technology, 2015, 46: 204-209. doi: 10.1016/j.ast.2015.07.012
    [56] DANG Z, FAN L, WANG Z, et al. On the maximal and minimal distances of flying-around satellite formation[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(6): 845-852. doi: 10.1108/AEAT-08-2015-0192
    [57] HE W, CHEN G, HAN Q, et al. Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control[J]. Information Sciences, 2017, 380: 145-158. doi: 10.1016/j.ins.2015.06.005
    [58] DU H, CHEN M Z Q, WEN G. Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 941-948.
    [59] 刘付成, 梅杰, 马广富. 有向图中模块化航天器系统相对轨道的自适应分布式一致性[J]. 控制理论与应用, 2014, 31(2): 223-229.

    LIU F C, MEI J, MA G F. Adaptive distributed consensus for relative orbit of modular spacecrafts under a directed graph[J]. Control Theory & Applications, 2014, 31(2): 223-229(in Chinese).
    [60] 刘付成, 梅杰, 马广富. 带未知干扰的模块化航天器系统相对轨道的队形控制[J]. 控制与决策, 2014, 29(6): 985-990.

    LIU F C, MEI J, MA G F. Formation control for relative translation of modular spacecraft with unknown disturbances[J]. Control and Decision, 2014, 29(6): 985-990(in Chinese).
    [61] CHEN T, CHEN G. Distributed adaptive tracking control of multiple flexible spacecraft under various actuator and measurement limitations[J]. Nonlinear Dynamics, 2018, 91(3): 1571-1586. doi: 10.1007/s11071-017-3965-4
    [62] MCINNES C R. Autonomous proximity manoeuvring using artificial potential functions[J]. ESA Journal, 1993, 17(2): 159-169.
    [63] MUSHET G, MINGOTTI G, COLOMBO C, et al. Self-organizing satellite constellation in geostationary earth orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 910-923. doi: 10.1109/TAES.2014.130690
    [64] SPENCER D A, LOVELL T A. Maneuver design using relative orbital elements[J]. Journal of the Astronautical Sciences, 2015, 62(4): 315-350. doi: 10.1007/s40295-015-0072-y
    [65] SPENCER D A. Automated trajectory control using artificial potential functions to target relative orbits[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2142-2148. doi: 10.2514/1.G001487
    [66] 周亮. 航天器集群飞行的轨道保持与重构机动[D]. 西安: 西北工业大学, 2016.

    ZHOU L. Orbit maintenance and reconfiguration for spacecraft cluster flight[D]. Xi’an: Northwestern Polytechnical University, 2016(in Chinese).
    [67] PALACIOS L, CERIOTTI M, RADICE G. Close proximity formation flying via linear quadratic tracking controller and artificial potential function[J]. Advances in Space Research, 2015, 56(10): 2167-2176. doi: 10.1016/j.asr.2015.09.005
    [68] NAG S, SUMMERER L. Behaviour based, autonomous and distributed scatter manoeuvres for satellite swarms[J]. Acta Astronautica, 2013, 82(1): 95-109. doi: 10.1016/j.actaastro.2012.04.030
    [69] WANG Z K, XU Y, JIANG C, et al. Self-organizing control for satellite clusters using artificial potential function in terms of relative orbital elements[J]. Aerospace Science and Technology, 2019, 84: 799-811. doi: 10.1016/j.ast.2018.11.033
    [70] XU Y, WANG Z K, ZHANG Y L. Bounded flight and collision avoidance control for satellite clusters using intersatellite flight bounds[J]. Aerospace Science and Technology, 2019, 94: 105425. doi: 10.1016/j.ast.2019.105425
    [71] SALARI A, SHIRVANIMOGHADDAM M, SHAHAB M B, et al. Clustering-based joint channel estimation and signal detection for grant-free NOMA[C]//Proceedings of the IEEE Globecom Workshops. Piscataway: IEEE Press, 2020: 1-6.
    [72] 孟亚洁, 武林. 信息通信技术发展趋势展望[J]. 中国电信业, 2021(2): 12-15.

    MENG Y J, WU L. Outlook on information and communication technology development trends[J]. China Telecommunications Trade, 2021(2): 12-15(in Chinese).
    [73] LI P X, HE Y Z, CUI G F, et al. Asynchronous cooperative alpha for multi-receiver satellite communication networks[J]. IEEE Communications Letters, 2017, 21(6): 1321-1324. doi: 10.1109/LCOMM.2017.2672985
    [74] 陈文江, 陈麒安, 陈宏铭, 等. 低轨卫星通信的机遇、挑战与量测方案[J]. 中国集成电路, 2022, 31(6): 22-30.

    CHEN W J, CHEN Q A, CHEN H M, et al. Opportunities, challenges and measurement schemes of LEO satellite communication[J]. China Integrated Circuit, 2022, 31(6): 22-30(in Chinese).
    [75] 赵鹏. 我国低轨卫星通信产业发展现状及趋势分析[J]. 卫星应用, 2021(8): 20-23.

    ZHAO P. Development status and trend analysis of low-orbit satellite communication industry in China[J]. Satellite Application, 2021(8): 20-23(in Chinese).
    [76] 陈山枝. 关于低轨卫星通信的分析及我国的发展建议[J]. 电信科学, 2020, 36(6): 1-13.

    CHEN S Z. Analysis of LEO satellite communication and suggestions for its development strategy in China[J]. Telecommunications Science, 2020, 36(6): 1-13(in Chinese).
    [77] LIU J J, SHI Y P, ZHAO L, et al. Joint placement of controllers and gateways in SDN-enabled 5G-satellite integrated network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(2): 221-232. doi: 10.1109/JSAC.2018.2804019
    [78] 张聪, 高峰. 卫星互联网未来应用场景及安全性分析[J]. 信息技术, 2022(3): 120-126.

    ZHANG C, GAO F. The future application scenarios and security analysis of satellite Internet[J]. Information Technology, 2022(3): 120-126(in Chinese).
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1380
  • HTML全文浏览量:  168
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 录用日期:  2022-08-11
  • 网络出版日期:  2022-08-19
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答