留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于隐含非线性维纳退化过程的剩余寿命预测

杨家鑫 唐圣金 李良 孙晓艳 祁帅 司小胜

杨家鑫,唐圣金,李良,等. 基于隐含非线性维纳退化过程的剩余寿命预测[J]. 北京航空航天大学学报,2024,50(1):328-340 doi: 10.13700/j.bh.1001-5965.2022.0243
引用本文: 杨家鑫,唐圣金,李良,等. 基于隐含非线性维纳退化过程的剩余寿命预测[J]. 北京航空航天大学学报,2024,50(1):328-340 doi: 10.13700/j.bh.1001-5965.2022.0243
YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0243
Citation: YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0243

基于隐含非线性维纳退化过程的剩余寿命预测

doi: 10.13700/j.bh.1001-5965.2022.0243
基金项目: 国家自然科学基金(61703410,61873175,61873273,61773386,61922089);陕西省自然科学基础研究计划(2022JM-376)
详细信息
    通讯作者:

    E-mail:tangshengjin27@126.com

  • 中图分类号: TB114.3

Remaining useful life prediction based on implicit nonlinear Wiener degradation process

Funds: National Natural Science Foundation of China (61703410,61873175,61873273,61773386,61922089);Natural Science Basic Research Program of Shaanxi (2022JM-376)
More Information
  • 摘要:

    准确的剩余寿命预测有助于提高系统的可靠性安全性,并降低系统全生命周期的经济成本。工程应用中,由于不确定测量的影响,随机退化系统的非线性退化特征一般处于隐含状态。针对现有隐含尺度变换非线性维纳退化过程主要应用于退化建模和寿命分布估计的问题,提出一种针对隐含尺度变换非线性维纳退化过程的剩余寿命预测方法。建立同时考虑测量误差和尺度变换非线性维纳过程的退化模型,并通过Kalman滤波方法根据设备现场退化数据进行参数在线更新。推导出考虑模型参数在线更新的剩余寿命概率密度函数和累积分布函数解析表达式。基于历史退化数据,提出一种针对隐含尺度变换非线性维纳退化过程模型未知参数的极大似然无偏估计方法。通过仿真退化数据和实际涡扇发动机数据进行实验验证。实验结果表明:同时考虑测量不确定性和非线性退化特征的剩余寿命预测方法具有更高的预测精度。

     

  • 图 1  仿真退化路径

    Figure 1.  Simulated degradation path

    图 2  ${M_0}$、${M_1}$和${M_2}$在不同时刻的漂移系数估计

    Figure 2.  Estimation of drift coefficients of ${M_0}$,${M_1}$ and ${M_2}$ at different times

    图 3  估计的剩余寿命分布

    Figure 3.  Estimated distribution of remaining useful life

    图 4  26 h的剩余寿命分布

    Figure 4.  Remaining useful life distribution at 26 h

    图 5  估计的剩余寿命MSE

    Figure 5.  MSE of estimated remaining useful life

    图 6  涡扇发动机部分单元退化路径

    Figure 6.  Partial unit degradation path of turbofan engine

    图 7  不同循环次数的估计剩余寿命分布

    Figure 7.  Estimated remaining useful life distribution at different cycles

    图 8  不同循环次数的寿命分布

    Figure 8.  Remaining useful life distributions at different cycles

    图 9  ${M_0}$、${M_1}$和${M_2}$在不同时刻的${u_\lambda }$后验参数估计

    Figure 9.  Posteriori parameter estimation of ${u_\lambda }$for ${M_0}$,${M_1}$and${M_2}$at different times

    图 10  不同循环次数的估计剩余寿命MSE

    Figure 10.  MSE of estimated remaining useful life at different cycles

    表  1  仿真数据离线参数估计

    Table  1.   Offline parameter estimation of simulation data

    模型 ${u_\lambda }$ $\sigma _\lambda ^2$ $\sigma _B^2$ $\theta $ $\sigma _\varepsilon ^2$
    ${M_0}$ 1.2426 0.13234 4.4832 1.4262 7.4802
    ${M_1}$ 1.70292 0.193597 11.2991 1.33312 0
    ${M_2}$ 5.28521 2.01332 30.4924 1 3.35557
    下载: 导出CSV

    表  2  涡扇发动机数据离线参数估计

    Table  2.   Offline parameter estimation of turbofan engine data

    模型 ${u_\lambda }$ $\sigma _\lambda ^2$ $\sigma _B^2$ $\theta $ ${\sigma _\varepsilon ^2 }$
    ${M_0}$ 4.4916×10−6 8.6244×10-13 2.9413×10−6 2.5895 0.58919
    ${M_1}$ 0.038712 0.00023819 2.54 0.83698 0
    ${M_2}$ 0.016695 3.2668×10−5 0.011918 1 0.53502
    下载: 导出CSV
  • [1] 李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 2119-2141.

    LI T M, SI X S, LIU X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica, 2022, 48(9): 2119-2141(in Chinese) .
    [2] 王凤飞, 唐圣金, 孙晓艳, 等. 考虑随机效应的多源信息融合剩余寿命预测 [J/OL]. 北京航空航天大学学报, 2022, (2021-03-01)[2022-04-03]. https://link.cnki.net/urlid/11.2625.V.20220228.1906.003.html. DOI: 10.13700/j.bh.1001-5965.2021.0782.

    WANG F F, TANG S J, SUN X Y, et al. Remaining useful life prediction based on multi source information with considering random effects [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2022, (2021-03-01)[2022-04-03]. https://link.cnki.net/urlid/11.2625.V.20220228.1906.003.html. DOI:10.13700/j.bh.1001-5965.2021.0782(in Chinese) .
    [3] WANG Z, CHEN Y, CAI Z, et al. Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 415-431. doi: 10.23919/JSEE.2020.000018
    [4] 郑建飞, 胡昌华, 司小胜, 等. 考虑不确定测量和个体差异的非线性随机退化系统剩余寿命估计[J]. 自动化学报, 2017, 43(2): 259-270. doi: 10.16383/j.aas.2017.c150775

    ZHENG J F, HU C H, SI X S, et al. Remaining useful life estimation for nonlinear stochastic degrading systems with uncertain measurement and unit-to-unit variability[J]. Acta Automatica Sinica, 2017, 43(2): 259-270(in Chinese). doi: 10.16383/j.aas.2017.c150775
    [5] ZHANG Z, SI X, HU C, et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796. doi: 10.1016/j.ejor.2018.02.033
    [6] 万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551. doi: 10.13700/j.bh.1001-5965.2020.0439

    WAN C H, LIU Z G, TANG S J, et al. Remaining useful life prediction method based on the nonlinear random coefficient regression model with imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2542-2551 (in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0439
    [7] WANG D, YANG F, TSUI K L, et al. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1282-1291. doi: 10.1109/TIM.2016.2534258
    [8] SI X S, WANG W, HU C H, et al. Remaining useful life estimation – A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14. doi: 10.1016/j.ejor.2010.11.018
    [9] SI X S, WANG W, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 219-237. doi: 10.1016/j.ymssp.2012.08.016
    [10] LIN C P, LING M H, CABRERA J, et al. Prognostics for lithium-ion batteries using a two-phase gamma degradation process model[J]. Reliability Engineering & System Safety, 2021, 214: 107797. doi: 10.1016/j.ress.2021.107797
    [11] HAO S, YANG J, BERENGUER C. Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors[J]. Reliability Engineering & System Safety, 2019, 189: 261-270.
    [12] TANG S, XU X, YU C, et al. Remaining useful life prediction with fusing failure time data and field degradation data with random effects[J]. IEEE Access, 2020, 8: 11964-11978. doi: 10.1109/ACCESS.2019.2948263
    [13] LIU D, WANG S, ZHANG C. Reliability estimation by fusing multiple-source information based on evidential variable and Wiener process[J]. Computers & Industrial Engineering, 2021, 162: 107745.
    [14] WHITMORE G A. Estimating degradation by a Wiener diffusion process subject to measurement error[J]. Lifetime Data Analysis, 1995, 1(3): 307-319. doi: 10.1007/BF00985762
    [15] PENG C Y, TSENG S T. Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455. doi: 10.1109/TR.2009.2026784
    [16] SI X S, WANG W, HU C H, et al. Estimating remaining useful life with three-source variability in degradation modeling[J]. IEEE Transactions on Reliability, 2014, 63(1): 167-190. doi: 10.1109/TR.2014.2299151
    [17] FENG L, WANG H, SI X, et al. A state-space-based prognostic model for hidden and age-dependent nonlinear degradation process[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(4): 1072-1086. doi: 10.1109/TASE.2012.2227960
    [18] WHITMORE G A, SCHENKELBERG F. Modelling accelerated degradation data using wiener diffusion with a time scale transformation[J]. Lifetime Data Analysis, 1997, 3(1): 27-45. doi: 10.1023/A:1009664101413
    [19] YE Z S, WANG Y, TSUI K L, et al. Degradation data analysis using Wiener processes with measurement errors[J]. IEEE Transactions on Reliability, 2013, 62(4): 772-780. doi: 10.1109/TR.2013.2284733
    [20] PAN D, WEI Y, FANG H, et al. A reliability estimation approach via Wiener degradation model with measurement errors[J]. Applied Mathematics and Computation, 2018, 320: 131-141. doi: 10.1016/j.amc.2017.09.020
    [21] PAN D, LU S, LIU Y, et al. Degradation data analysis using a Wiener degradation model with three-source uncertainties[J]. IEEE Access, 2019, 7: 37896-37907. doi: 10.1109/ACCESS.2019.2906325
    [22] YE Z, CHEN N, TSUI K L. A Bayesian approach to condition monitoring with imperfect inspections[J]. Quality and Reliability Engineering International, 2015, 31(3): 513-522. doi: 10.1002/qre.1609
    [23] HUANG Z, XU Z, WANG W, et al. Remaining useful life prediction for a nonlinear heterogeneous Wiener process model with an adaptive drift[J]. IEEE Transactions on Reliability, 2015, 64(2): 687-700. doi: 10.1109/TR.2015.2403433
    [24] TANG S, YU C, WANG X, et al. Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error[J]. Energies, 2014, 7(2): 520-547. doi: 10.3390/en7020520
    [25] 唐圣金, 郭晓松, 周召发, 等. 步进应力加速退化试验的建模与剩余寿命估计[J]. 机械工程学报, 2014, 50(16): 33-40. doi: 10.3901/JME.2014.16.033

    TANG S J, GUO X S, ZHOU Z F, et al. Step stress accelerated degradation process modeling and remaining useful life estimation[J]. Journal of Mechanical Engineering, 2014, 50(16): 33-40 (in Chinese) . doi: 10.3901/JME.2014.16.033
    [26] TANG S, WANG F, SUN X, et al. Unbiased parameters estimation and mis-specification analysis of Wiener process-based degradation model with random effects[J]. Applied Mathematical Modelling, 2022, 109: 134-160. doi: 10.1016/j.apm.2022.03.039
    [27] HAN Y, MA C, TANG S, et al. Residual life estimation of lithium-ion batteries based on nonlinear Wiener process with measurement error[J]. Journal of Risk and Reliability, 2023, 237(1): 133-151.
    [28] SI X S, WANG W, CHEN M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226(1): 53-66. doi: 10.1016/j.ejor.2012.10.030
    [29] LE SON K, FOULADIRAD M, BARROS A, et al. Remaining useful life estimation based on stochastic deterioration models: A comparative study[J]. Reliability Engineering & System Safety, 2013, 112: 165-175.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  49
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 录用日期:  2022-05-13
  • 网络出版日期:  2022-05-30
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答