留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2195-T8铝锂合金疲劳多裂纹融合试验与仿真研究

庞闯 刘德俊 田干 郭伟 刘德博

庞闯,刘德俊,田干,等. 2195-T8铝锂合金疲劳多裂纹融合试验与仿真研究[J]. 北京航空航天大学学报,2024,50(1):350-358 doi: 10.13700/j.bh.1001-5965.2022.0249
引用本文: 庞闯,刘德俊,田干,等. 2195-T8铝锂合金疲劳多裂纹融合试验与仿真研究[J]. 北京航空航天大学学报,2024,50(1):350-358 doi: 10.13700/j.bh.1001-5965.2022.0249
PANG C,LIU D J,TIAN G,et al. Experimental and simulation study on fatigue multi crack fusion of 2195-T8 Al-Li alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):350-358 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0249
Citation: PANG C,LIU D J,TIAN G,et al. Experimental and simulation study on fatigue multi crack fusion of 2195-T8 Al-Li alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):350-358 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0249

2195-T8铝锂合金疲劳多裂纹融合试验与仿真研究

doi: 10.13700/j.bh.1001-5965.2022.0249
基金项目: 国家自然科学基金(52075541)
详细信息
    通讯作者:

    E-mail:tiangan_2012@163.com

  • 中图分类号: TG147

Experimental and simulation study on fatigue multi crack fusion of 2195-T8 Al-Li alloy

Funds: National Natural Science Foundation of China (52075541)
More Information
  • 摘要:

    铝锂合金作为航空航天广泛应用的合金材料,其疲劳断裂行为的研究对结构安全性评价具有重要意义。以第三代铝锂合金2195-T8为研究对象,通过恒幅拉-拉疲劳试验和有限元方法对2195-T8 铝锂合金疲劳裂纹扩展行为进行试验与仿真研究。基于断面显微测量与观察,在仿真模型中引入多个初始裂纹,模拟多裂纹的融合扩展过程,获得多裂纹独自扩展、交融时扩展和融合后扩展的规律。结果表明:裂纹融合前,在疲劳循环载荷作用下,裂纹尖端应力强度因子总体上不断增大,塑性区域体积增加区域平缓;当裂纹相互融合时,裂纹面处应力强度因子瞬时增大,远高于其余裂尖数值大小;随着裂纹进一步融合,尖端应力强度因子数值趋于平稳;裂纹完全融合后,到达裂纹快速扩展阶段,塑性区域体积与扩展步数呈正比增加,扩展速率呈现先快后慢的规律,裂纹面交汇融合成新的椭圆形状裂纹面。

     

  • 图 1  2195-T8铝锂合金裂纹扩展速率曲线

    Figure 1.  Crack growth rate curve of 2195-T8 Al-Li alloy

    图 2  裂纹融合准则示意图

    Figure 2.  Schematic diagram of crack fusion criterion

    图 3  裂纹扩展试样与试验

    Figure 3.  Crack growth specimens and tests

    图 4  2195-T8铝锂合金da/dNK曲线(室温)

    Figure 4.  da/dNK curve of 2195-T8 Al-Li alloy (room temperature)

    图 5  疲劳试验试样形状与尺寸

    Figure 5.  Shape and size of fatigue test specimens

    图 6  伺服试验机

    Figure 6.  Servo testing machine

    图 7  扫描电镜下的试样疲劳断口形貌

    Figure 7.  SEM micrograph for fatigue fracture surface of specimens

    图 8  疲劳拉伸试样断口形貌

    Figure 8.  Fracture morphology of fatigue tensile specimen

    图 9  完整试样网格

    Figure 9.  Complete sample grid

    图 10  子模型

    Figure 10.  Sub model

    图 11  裂纹面扩展演变

    Figure 11.  Crack surface propagation and evolution

    图 12  仿真与试验裂纹扩展

    Figure 12.  Simulation and experimental crack propagation

    图 13  裂纹尖端应力强度因子

    Figure 13.  Stress intensity factor at crack tip

    图 14  裂纹扩展步中应力云图

    Figure 14.  Stress nephogram in crack propagation step

    图 15  塑性单元体积变化

    Figure 15.  Volume change of plastic elements

    表  1  2195-T8铝锂合金的基本力学性能

    Table  1.   Basic mechanical properties of 2195-T8 AL-Li alloy

    抗拉强度
    σb/MPa
    屈服强度
    σs/MPa
    拉伸率
    δ/ %
    弹性模量
    E/GPa
    609.90 583.33 11.4 72.29
    下载: 导出CSV
  • [1] XU Y, WANG X J, YAN Z T, et al. Corrosion properties of light-weight and high-strength 2195 Al-Li alloy[J]. Chinese Journal of Aeronautics, 2011, 24(5): 681-686. doi: 10.1016/S1000-9361(11)60080-0
    [2] 尹嘉明, 马鹏程, 陈永来, 等. 铝锂合金的发展及在运载火箭贮箱的应用[J]. 兵器材料科学与工程, 2020, 43(3): 137-141.

    YIN J M, MA P C, CHEN Y L, et al. The development of Al-Li alloys and its application in launch vehicle tank[J]. Ordnance Material Science and Engineering, 2020, 43(3): 137-141(in Chinese).
    [3] 梁准, 张颖晗, 高原, 等. 低温下2219铝合金贮箱焊接缺陷的试验与仿真分析[J]. 强度与环境, 2021, 48(5): 52-57.

    LIANG Z, ZHANG Y H, GAO Y, et al. Experiment and simulation analysis for weld defected 2219 aluminum alloy tank at low temperature[J]. Structure & Environment Engineering, 2021, 48(5): 52-57(in Chinese).
    [4] 魏国前, 陈斯雯, 余茜, 等. 焊趾多裂纹的试验与仿真分析[J]. 焊接学报, 2019, 40(11): 75-81.

    WEI G Q, CHEN S W, YU X, et al. Experimental and simulation study on multiple cracks of weld toe[J]. Transactions of the China Welding Institution, 2019, 40(11): 75-81(in Chinese).
    [5] 吴鹏飞, 杨邦成, 岳仕航. AA7075-T6 Ⅰ-Ⅱ复合疲劳裂纹扩展研究[J]. 宇航材料工艺, 2022, 52(1): 82-88.

    WU P F, YANG B C, YUE S H. Experimental study on Ⅰ-Ⅱ mixed-mode fatigue crack growth of AA7075-T6[J]. Aerospace Materials & Technology, 2022, 52(1): 82-88(in Chinese).
    [6] LI R J, ZHU Y M, FANG W J, et al. Multi-crack interaction and influence on the spherical pressure hull for a deep-sea manned submersible[J]. Journal of Marine Science and Application, 2021, 20(3): 491-503. doi: 10.1007/s11804-021-00223-0
    [7] 白树伟, 姜楠, 樊俊玲, 等. 疲劳裂纹扩展前缘形貌分析及数值模拟[J]. 科学技术与工程, 2019, 19(1): 256-260.

    BAI S W, JIANG N, FAN J L, et al. Morphology analysis and numerical simulation of fatigue crack propagation leading edge[J]. Science Technology and Engineering, 2019, 19(1): 256-260(in Chinese).
    [8] 赵颖, 黄美, 杨梦灵, 等. 推进剂贮箱金属焊接件疲劳裂纹对应力强度因子影响的数值分析[J]. 航天器环境工程, 2019, 36(3): 247-251.

    ZHAO Y, HUANG M, YANG M L, et al. Numerical analysis of fatigue crack vs. stress impact factor of metal welded joint for satellite propellant tank[J]. Spacecraft Environment Engineering, 2019, 36(3): 247-251(in Chinese).
    [9] 徐利辉, 马蒙, 刘维宁, 等. 基于模态叠加法的裂纹板动态应力强度因子计算[C]//第29届全国结构工程学术会议. 北京: 《工程力学》杂志社, 2020: 295-303.

    XU L H, MA M, LIU W N, et al. Calculation of dynamic stress intensity factor of cracked plate based on modal superposition method [C]//Proceedings of the 29th National Structural Engineering Academic Conference. Beijing: Engineering Mechanics Magazine, 2020: 295-303(in Chinese).
    [10] AMIRI M, ARCARI A, AIROLDI L, et al. A continuum damage mechanics model for pit-to-crack transition in AA2024-T3[J]. Corrosion Science, 2015, 98: 678-687. doi: 10.1016/j.corsci.2015.06.009
    [11] 汪必升, 李毅波, 廖雅诗, 等. 基于扩展有限元模型的动态应力强度因子计算[J]. 中国机械工程, 2019, 30(11): 1294-1301.

    WANG B S, LI Y B, LIAO Y S, et al. Calculation of dynamic stress intensity factors based on XFEM model[J]. China Mechanical Engineering, 2019, 30(11): 1294-1301(in Chinese).
    [12] CHEN M X, LI Y B, XIA L Y, et al. Effects of pre-rolling on mechanical properties and fatigue crack growth rate of 2195 Al-Li alloy[J]. Journal of Central South University, 2022, 29(3): 836-847. doi: 10.1007/s11771-022-4969-x
    [13] 郦正能. 应用断裂力学[M]. 北京: 北京航空航天大学出版社, 2012: 111-112.

    LI Z N. Applied fracture mechanics[M]. Beihang: Beihang University Press, 2012: 111-112(in Chinese).
    [14] 岳应娟, 李宁, 陈飞, 等. 埋藏裂纹应力强度因子的有限元分析[J]. 武汉科技大学学报, 2015, 38(2): 125-128.

    YUE Y J, LI N, CHEN F, et al. Finite element analysis of stress intensity factor of embedding cracks[J]. Journal of Wuhan University of Science and Technology, 2015, 38(2): 125-128(in Chinese).
    [15] NEWMAN J C JR, RAJU I S. Stress-intensity factors for internal surface cracks in cylindrical pressure vessels[J]. Journal of Pressure Vessel Technology, 1980, 102(4): 342-346. doi: 10.1115/1.3263343
    [16] 刘城志, 岳应娟, 陈飞. 一种基于FRANC3D的高压气瓶安全性评定的新方法[J]. 铸造技术, 2012, 33(6): 685-687.

    LIU C Z, YUE Y J, CHEN F. New method to assess safety of high-pressure cylinder based on FRANC3D[J]. Foundry Technology, 2012, 33(6): 685-687(in Chinese).
    [17] 艾书民, 于明, 成晓鸣, 等. 基于Franc3D软件的三维裂纹扩展分析与应用[J]. 机械强度, 2018, 40(1): 251-254.

    AI S M, YU M, CHENG X M, et al. Analysis and application of three-dimensional crack growth based on Franc3D[J]. Journal of Mechanical Strength, 2018, 40(1): 251-254(in Chinese).
    [18] 蹇海根, 姜锋, 文康, 等. 不同应力下7B04铝合金的疲劳断口[J]. 中南大学学报(自然科学版), 2010, 41(1): 132-137.

    JIAN H G, JIANG F, WEN K, et al. Fatigue fracture of 7B04 aluminum alloy under different stresses[J]. Journal of Central South University (Science and Technology), 2010, 41(1): 132-137(in Chinese).
    [19] 占勇, 温建锋, 涂善东, 等. 基于疲劳寿命的共面多裂纹合并准则研究[J]. 压力容器, 2016, 33(2): 1-9.

    ZHAN Y, WEN J F, TU S D, et al. Combination rules for multiple coplanar cracks based on fatigue life[J]. Pressure Vessel Technology, 2016, 33(2): 1-9(in Chinese).
    [20] 吴圣川, 李存海, 张文, 等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538.

    WU S C, LI C H, ZHANG W, et al. Research progress on fatigue crack propagation mechanisms and models in metal materials[J]. Journal of Solid Mechanics, 2019, 40(6): 489-538(in Chinese).
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  38
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 录用日期:  2022-06-20
  • 网络出版日期:  2022-06-24
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答