留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进迁移学习的双分支卷积神经网络图像去雾

李云红 于惠康 马登飞 苏雪平 段姣姣 史含驰

李云红,于惠康,马登飞,等. 改进迁移学习的双分支卷积神经网络图像去雾[J]. 北京航空航天大学学报,2024,50(1):30-38 doi: 10.13700/j.bh.1001-5965.2022.0253
引用本文: 李云红,于惠康,马登飞,等. 改进迁移学习的双分支卷积神经网络图像去雾[J]. 北京航空航天大学学报,2024,50(1):30-38 doi: 10.13700/j.bh.1001-5965.2022.0253
LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0253
Citation: LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0253

改进迁移学习的双分支卷积神经网络图像去雾

doi: 10.13700/j.bh.1001-5965.2022.0253
基金项目: 国家自然科学基金(61902301);陕西省科技厅自然科学基础研究计划重点项目(2022JZ-35);陕西省教育厅自然科学基础研究计划(19JK0364);国家级大学生创新创业训练计划(202210709012);陕西高校青年创新团队
详细信息
    通讯作者:

    E-mail:hitliyunhong@163.com

  • 中图分类号: TP391.41

Improved transfer learning based dual-branch convolutional neural network image dehazing

Funds: National Natural Science Foundation of China (61902301); Key Projects of Natural Science Basic Research Program of Shaanxi Provincial Department of Science and Technology (2022JZ-35); Natural Science Basic Research Program of Shaanxi Provincial Department of Education (19JK0364); China National University Student Innovation & Entrepreneurship Development Program (202210709012); The Youth Innovation Team of Shaanxi Universities
More Information
  • 摘要:

    针对现有图像去雾算法存在去雾不彻底和图像颜色失真的问题,提出一种迁移学习子网络和残差注意力子网络相结合的图像去雾模型。采用迁移学习子网络的预训练模型增强样本的特征属性;构建双分支网络结构,并利用残差注意力子网络辅助迁移学习子网络训练网络模型的参数;利用尾部集成学习的方法融合双网络的特征,得到去雾图像的模型参数,完成图像恢复任务。实验结果表明:所提算法在RESIDE数据集和O-HAZE数据集上PSNR指标比GCANet分别提高了1.87 dB和4.22 dB,在O-HAZE数据集上SSIM指标比GCANet提高了6.7%。

     

  • 图 1  双分支网络结构

    Figure 1.  Dual-branch network structure

    图 2  注意力模块

    Figure 2.  Attention block

    图 3  增强模块

    Figure 3.  Enhance block

    图 4  残差注意力子网络

    Figure 4.  Residual attention sub-net

    图 5  不同去雾算法在SOTS数据集上的去雾效果

    Figure 5.  Dehazing effect of different dehazing algorithms on SOTS dataset

    图 6  不同去雾算法在O-HAZE数据集上的去雾效果

    Figure 6.  Dehazing effect of different dehazing algorithms on O-HAZE dataset

    图 7  不同去雾算法的去雾效果

    Figure 7.  Dehazing effect of different dehazing algorithms

    图 8  不同模型的区域去雾效果

    Figure 8.  Regional dehazing effect of different models

    图 9  O-HAZE数据集的训练曲线对比

    Figure 9.  Comparison of training curves for O-HAZE dataset

    表  1  不同去雾算法在SOTS数据集上的SSIM、PSNR值

    Table  1.   SSIM and PSNR values of SOTS dataset under different dehazing algorithms

    算法 PSNR/dB SSIM
    DCP 16.62 0.817
    CAP 19.05 0.840
    DehazeNet 20.64 0.800
    AODNet 19.06 0.850
    GCANet 30.23 0.975
    本文算法 32.10 0.94
    下载: 导出CSV

    表  2  不同去雾算法在O-HAZE数据集上的SSIM、PSNR值

    Table  2.   SSIM and PSNR values of O-HAZE dataset under different dehazing algorithms

    算法PSNR/dBSSIM
    DCP12.920.505
    CAP14.550.567
    DehazeNet16.270.604
    AODNet17.690.616
    GCANet18.410.680
    本文算法22.630.747
    下载: 导出CSV

    表  3  不同去雾算法对性能的影响

    Table  3.   Effects of different dehazing algorithms on performance

    算法PSNR/dBSSIM
    TLN(NP)19.870.661
    TLN20.560.706
    RAN17.340.589
    TLN(NP)+RAN20.920.716
    本文21.940.736
    下载: 导出CSV

    表  4  不同模型对性能的影响

    Table  4.   Effects of different models on performance

    模型PSNR/dBSSIM
    Model 121.360.612
    Model 221.500.700
    Model 321.520.650
    Model 422.630.747
    下载: 导出CSV

    表  5  不同加权系数对性能的影响

    Table  5.   Effect of different weighting coefficients on performance

    方法 $ {\lambda _{\rm{s}}} $ $ {\lambda _{\rm{p}}} $ $ {\lambda _{\rm{m}}} $ 损失函数 PRNR/dB SSIM
    Method 1 1 0 0 $L = {L_{\rm{s}}}$ 20.90 0.607
    Method 2 1 0.05 0 $L = {L_{\rm{s}}} + 0.05 {L_{\rm{p}}}$ 21.06 0.703
    Method 3 1 0.01 0 $L = {L_{\rm{s}}} + 0.01 {L_{\rm{p}}}$ 21.33 0.717
    Method 4 1 0 0.5 $L = {L_{\rm{s}}} + 0.5 {L_{\rm{m}}}$ 20.81 0.713
    Method 5 1 0 0.8 $L = {L_{\rm{s}}} + 0.8 {L_{\rm{m}}}$ 20.75 0.727
    Method 6 1 0.05 0.5 $L = {L_{\rm{s}}} + 0.05 {L_{\rm{p}}} + 0.5 {L_{\rm{m}}}$ 21.35 0.733
    Method 7 1 0.05 0.8 $L = {L_{\rm{s}}} + 0.05 {L_{\rm{p}}} + 0.8 {L_{\rm{m}}}$ 21.20 0.730
    Method 8 1 0.01 0.5 $L = {L_{\rm{s} } } + 0.01 {L_{\rm{p} } } + 0.5 {L_{\rm{m}}}$ 22.63 0.747
    Method 9 1 0.01 0.8 $L = {L_{\rm{s}}} + 0.01 {L_{\rm{p}}} + 0.8 {L_{\rm{m}}}$ 22.38 0.730
    下载: 导出CSV
  • [1] 禹晶, 徐东彬, 廖庆敏. 图像去雾技术研究进展[J]. 中国图象图形学报, 2011, 16(9): 1561-1576.

    YU J, XU D B, LIAO Q M. Imagedefogging: A survey[J]. Journal of Image and Graphics, 2011, 16(9): 1561-1576(in Chinese).
    [2] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
    [3] ZHU Q, MAI J, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533. doi: 10.1109/TIP.2015.2446191
    [4] TAN R T. Visibility in bad weather from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008: 1-8.
    [5] 杨燕, 张金龙, 张浩文. 基于区间估计与透射率自适应约束的去雾算法[J]. 北京航空航天大学学报, 2022, 48(1): 15-26. doi: 10.13700/j.bh.1001-5965.2020.0547

    YANG Y, ZHANG J L, ZHANG H W. Dehazing algorithm based on interval estimation and adaptive constraints of transmittance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 15-26(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0547
    [6] CAI B, XU X, JIA K, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198. doi: 10.1109/TIP.2016.2598681
    [7] REN W, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//Proceedings of the European conference on Computer Vision. Berlin: Springer, 2016: 154-169.
    [8] LI B, PENG X, WANG Z, et al. AOD-Net: All-in-one dehazing network[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 4770-4778.
    [9] LIU X, MA Y, SHI Z, et al. GridDehazeNet: Attention-based multi-scale network for image dehazing[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 7314-7323.
    [10] CHEN D, HE M, FAN Q, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2019: 1375-1383.
    [11] 王殿伟, 李顺利, 韩鹏飞. 基于特征约束CycleGAN的单幅图像去雾算法研究[J]. 激光与光电子学进展, 2021, 58(14): 272-278.

    WANG D W, LI S L, HANG P F. Feature constraint CycleGAN for single image dehazing algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(14): 272-278(in Chinese).
    [12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [13] NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. doi: 10.1016/j.neucom.2021.03.091
    [14] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2223-2232.
    [15] LI B, REN W, FU D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492-505.
    [16] ANCUTI C O, ANCUTI C, TIMOFTE R, et al. O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE Press, 2018: 754-762.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1070
  • HTML全文浏览量:  97
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-08-26
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答