留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维排布对CFRP感应加热固化成型过程影响表征

付天宇 杨宁 古云飞 许家忠 蒋悦 李斌

付天宇,杨宁,古云飞,等. 纤维排布对CFRP感应加热固化成型过程影响表征[J]. 北京航空航天大学学报,2024,50(1):198-207 doi: 10.13700/j.bh.1001-5965.2022.0259
引用本文: 付天宇,杨宁,古云飞,等. 纤维排布对CFRP感应加热固化成型过程影响表征[J]. 北京航空航天大学学报,2024,50(1):198-207 doi: 10.13700/j.bh.1001-5965.2022.0259
FU T Y,YANG N,GU Y F,et al. Characterization of influence of fiber arrangement on CFRP induction heating curing process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):198-207 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0259
Citation: FU T Y,YANG N,GU Y F,et al. Characterization of influence of fiber arrangement on CFRP induction heating curing process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):198-207 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0259

纤维排布对CFRP感应加热固化成型过程影响表征

doi: 10.13700/j.bh.1001-5965.2022.0259
基金项目: 国家自然科学基金(52303031);常州市应用基础研究计划(CJ20220035);碳纤维压力容器成型技术研究实验室(KYPT202203Z)
详细信息
    通讯作者:

    E-mail:827263230@qq.com

  • 中图分类号: V258+.3;TB332

Characterization of influence of fiber arrangement on CFRP induction heating curing process

Funds: National Natural Science Foundation of China (52303031); Changzhou Applied Basic Research Plan (CJ20220035); Research Laboratory of Carbon Fiber Pressure Vessel Forming Technology (KYPT202203Z)
More Information
  • 摘要:

    在采用电磁感应加热方式实现碳纤维复合材料(CFRP)加热固化成型的过程中,如何准确表征材料各组成部分的属性参数状态对研究材料加热过程中温度、固化度及应力场分布至关重要。根据纤维实际铺层方式对材料各组成部分进行独立表征,以及碳纤维壳体的等效电-磁-热特性建立了CFRP感应加热有限元细观分析模型,将纤维织构和树脂基体单独建立,实现CFRP在感应加热过程中其内部纤维织构中物理场的变化规律以及对材料整体升温变化规律进行系统分析。通过该模型计算了材料温度、固化度及应力场分布的变化规律,揭示了碳纤维排布对材料感应加热效果的影响,并根据感应加热实验验证了该模型可以准确表征各物理场的分布状态。为研究CFRP在感应加热中各物理场变化规律提供了有效的计算模型和分析方法。

     

  • 图 1  纤维铺层方式的几何模型

    Figure 1.  Geometric model of fiber layup method

    图 2  材料网格划分质量直方图

    Figure 2.  Material meshing histogram

    图 3  网格划分质量图

    Figure 3.  Meshing quality map

    图 4  CFRP感应加热原理

    Figure 4.  Principle of CFRP induction heating

    图 5  纤维编织结构中涡旋电流分布

    Figure 5.  Eddy current distribution in fiber braided structures

    图 6  纤维织构中的发热量分布

    Figure 6.  Heat distribution in fiber texture

    图 7  各类型CFRP加热至稳态时温度场分布状态

    Figure 7.  Distribution of temperature field when each type of CFRP is heated to a steady state

    图 8  各类型CFRP固化度分布

    Figure 8.  Distribution of curing degree of various types of CFRP

    图 9  CFRP加热过程中升温速率及固化度变化曲线

    Figure 9.  Variation curves of heating rate and curing degree during CFRP heating process

    图 10  各纤维织构及材料整体的应力场分布

    Figure 10.  Stress field distribution of each fiber texture and material as a whole

    图 11  各类型材料加热过程中应力变化曲线

    Figure 11.  Stress change curves of various types of materials during heating

    图 12  感应加热实验平台

    Figure 12.  Induction heating experimental platform

    图 13  感应加热实验材料温度场分布状态

    Figure 13.  Distribution of temperature field of materials in induction heating experiment

    图 14  感应加热应力采集装置

    Figure 14.  Induction heating stress acquisition device

    图 15  平纹编织CFRP感应加热实验中各点应力变化曲线

    Figure 15.  Variation curve of stress at each point in induction heating experiment of plain weave CFRP

    图 16  预浸布铺层及固化后的材料状态

    Figure 16.  Prepreg layup and cured material condition

    表  1  材料相关仿真参数

    Table  1.   Material related simulation parameter

    材料 导热系数/(W·(m·K)−1) 比热容/(J·(kg·K)−1) 密度/(kg·m−3) 电导率/(S·m−1) 相对介电常数 相对渗透率 弹性模量/GPa 热膨胀系数/K−1
    空气 0 1 1
    碳纤维 50 850 1500 6.4×104 1 160 −0.6×10−6
    树脂 0.2 1100 1200 1×10−2 3.2 1 1 6×10−5
    线圈 8960 6×107 1 1
    下载: 导出CSV
  • [1] NING F, CONG W, QIU J, et al. Additive manufac-turing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B Engineering, 2015, 80: 369-378. doi: 10.1016/j.compositesb.2015.06.013
    [2] SAMBRUNO A, Banon F, SALGUERO J, et al. Study of milling of low thickness thermoplastic carbon fiber composites in function of tool geometry and cutting conditions[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7-8): 2515-2526. doi: 10.1007/s00170-021-07050-1
    [3] ABLIZ D, YUGANG D. Curing methods for advanced polymer composites-A review[J]. Polymers & Polymer Composites, 2013, 21(6): 101-106.
    [4] SUN X F, MA S N, LIU H W. Research on properties of carbon fiber/epoxy resin composite material by microwave curing[J]. Rare Metal Materials and Engineering, 2012, 41: 422-424.
    [5] MENANA H, FELIACHI M. An integro-differential model for 3-D eddy current computation in carbon fiber reinforced polymer composites[J]. IEEE Transactions on Magnetics, 2011, 47(4): 756-763. doi: 10.1109/TMAG.2010.2102770
    [6] BAYERL T, DUHOVIC M, MITSCHANG P, et al. The heating of polymer composites by electromagnetic induction-A review[J]. Composites Part A, 2014, 57: 27-40. doi: 10.1016/j.compositesa.2013.10.024
    [7] JUN C, JINHAO Q, TOSHIYUKI T. Numerical analysis of correlation between fibre orientation and eddy current testing signals of carbon-fibre reinforced polymer composites[J]. International Journal of Applied Electromagnetics and Mechanics, 2012, 39(1-4): 251-259. doi: 10.3233/JAE-2012-1468
    [8] 付天宇, 许家忠, 赵辉, 等. CFRP感应加热线圈中心区域温度场[J]. 复合材料学报, 2021, 38(10): 3314-3322. doi: 10.13801/j.cnki.fhclxb.20201216.001

    FU T Y, XU J Z, ZHAO H, et al. Temperature field in the central area of CFRP induction heating coil[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3314-3322(in Chinese) . doi: 10.13801/j.cnki.fhclxb.20201216.001
    [9] FU T Y, XU J Z, HUI Z. Analysis of induction heating temperature field of plain weave CFRP based on finite element meso model[J]. Applied Composite Materials, 2021, 28(31): 149-163.
    [10] DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 214-233. doi: 10.1007/s42114-018-0072-z
    [11] LUNDSTRÖM F, FROGNER K, ANDERSSON M. A method for inductive measurement of equivalent electrical conductivity in thin non-consolidated multilayer carbon fiber fabrics[J]. Composites Part B Engineering, 2017, 140: 204-213.
    [12] LUNDSTRÖM F, FROGNER K, WIBERG O, et al. Induction heating of carbon fiber composites: Investigation of electric and thermal properties[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 53: S21-30. doi: 10.3233/JAE-162235
    [13] BRUCE K F, ROY L M, JOHN W G. A local theory of heating in cross-ply carbon fiber thermoplastic composites by magnetic induction[J]. Polymer Engineering & Science, 1992, 32(5): 357-369.
    [14] MITSCHANG P, RUDOLF R, NEITZEL M. Continuous induction welding process, modelling and realisation[J]. Journal of Thermoplastic Composite Materials, 2002, 15(2): 127-153. doi: 10.1177/0892705702015002451
    [15] BANERJEE A, AVESTRUZ A T, SURAKITBOVORN K, et al. Uniform single-sided induction heating using multiphase, multi-resonant halbach windings [C]//Applied Power Electronics Conference & Exposition. Piscataway: IEEE Press, 2014: 844-851.
    [16] FREDRIK L, KENNETH F, MATS A. A numerical model to analyse the temperature distribution in cross-ply CFRP during induction heating[J]. Composites Part B:Engineering, 2020, 202: 108419. doi: 10.1016/j.compositesb.2020.108419
    [17] TZENG J T, HSIEH K T. Electromagnetic analysis of composite structures subjected to transient magnetic fields[J]. Journal of Composite Materials, 2019, 54(6): 745-752.
    [18] RICCIO A, RUSSO A, RAIMONDO A, et al. A numerical/ experimental study on the induction heating of adhesives for composite materials bonding[J]. Materials Today Communications, 2018, 15: 203-213. doi: 10.1016/j.mtcomm.2018.03.008
    [19] LIU C W , QU C Y, HAN L, et al. Preparation of carbon fiber-reinforced polyimide composites via in situ induction heating [J]. High Performance Polymers, 2017, 29(9): 263-273.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  29
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 录用日期:  2022-06-20
  • 网络出版日期:  2022-07-25
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答