留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模型燃烧室中值班火焰的燃烧不稳定性分析

李明婧 郭志辉

李明婧,郭志辉. 模型燃烧室中值班火焰的燃烧不稳定性分析[J]. 北京航空航天大学学报,2024,50(3):951-961 doi: 10.13700/j.bh.1001-5965.2022.0274
引用本文: 李明婧,郭志辉. 模型燃烧室中值班火焰的燃烧不稳定性分析[J]. 北京航空航天大学学报,2024,50(3):951-961 doi: 10.13700/j.bh.1001-5965.2022.0274
LI M J,GUO Z H. Combustion instability analysis of pilot flame in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):951-961 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0274
Citation: LI M J,GUO Z H. Combustion instability analysis of pilot flame in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):951-961 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0274

模型燃烧室中值班火焰的燃烧不稳定性分析

doi: 10.13700/j.bh.1001-5965.2022.0274
基金项目: 国家科技重大专项(2017-Ⅲ-0008-0034)
详细信息
    通讯作者:

    E-mail:guozhihui@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Combustion instability analysis of pilot flame in model combustor

Funds: National Science and Technology Major Project (2017-Ⅲ-0008-0034)
More Information
  • 摘要:

    针对模型燃烧室中值班火焰的燃烧不稳定性问题,实验测量燃烧室内多点动态压力和火焰图像,利用快速傅里叶分析、本征正交分解(POD)等方法进行分析。结果表明:随着当量比增大,值班火焰的稳定性发生2次分岔现象,相应的不稳定模态分别对应系统的3阶、2阶本征纵向声学模态,均发生极限环振荡。POD结果表明:涡声频率锁定,发生在燃烧室纵向声学模态频率处,燃烧室内发生声-涡-火焰耦合的不稳定过程。而伴随着当量比提高,一方面,大尺度旋涡脱落改变火焰面积引发强烈放热振荡,声能产生增大;另一方面,两分支火焰张角不断增大,火焰位置主要波动方向与主要声学波动沿同一轴线。两方面作用下热声耦合更加容易,热释放脉动与压力脉动耦合的相位角减小,进而发生模态转换。

     

  • 图 1  实验系统示意图

    Figure 1.  Schematic diagram of experimental system

    图 2  值班火焰稳定器截面图

    Figure 2.  Cross section diagram of pilot flame holder

    图 3  压力及热释放脉动峰值

    Figure 3.  Peak pressure and heat release pulsation

    图 4  不稳定工况点的脉动主频率

    Figure 4.  Pulsating main frequency at unstable operating point

    图 5  $ \phi $=0.042时相空间重构结果

    Figure 5.  Time-phase space reconstruction result at $ \phi $=0.042

    图 6  $ \phi $=0.115时相空间重构结果

    Figure 6.  Time-phase space reconstruction result at $ \phi $=0.115

    图 7  火焰平均结构

    Figure 7.  Average flame structure

    图 8  热释放总强度轴向分布

    Figure 8.  Axial distribution of heat release total intensity

    图 9  热释放脉动强度轴向分布

    Figure 9.  Axial distribution of heat release pulsation intensity

    图 10  $ \phi $=0.042时前20阶POD模态能量比例

    Figure 10.  The first twenty POD modes energy proportion at $ \phi $=0.042

    图 11  $ \phi $=0.042时前6阶POD模态空间分布结构

    Figure 11.  Spatial distribution structure of the first 6 POD modes at $ \phi $=0.042

    图 12  $ \phi $=0.042的时间常数频谱分析

    Figure 12.  Spectral analysis of time constant at $ \phi $=0.042

    图 13  $ \phi $=0.084时前20阶POD模态能量比例

    Figure 13.  The first twenty POD modes energy proportion at $ \phi $=0.084

    图 14  $ \phi $=0.084时前6阶POD模态空间分布结构

    Figure 14.  Spatial distribution structure of the first six POD modes at $ \phi $=0.084

    图 15  $ \phi $=0.084的时间常数频谱分析

    Figure 15.  Spectral analysis of time constant at $ \phi $=0.084

    图 16  $ \phi $=0.115时前20阶POD模态能量比例

    Figure 16.  The first twenty POD modes energy proportion at $ \phi $=0.115

    图 17  $ \phi $=0.115时前6阶POD模态空间分布结构

    Figure 17.  Spatial distribution structure of the first six POD modes at $ \phi $=0.115

    图 18  $ \phi $=0.115的时间常数频谱分析

    Figure 18.  Spectral analysis of time constant at $ \phi $=0.115

    图 19  $ \phi $=0.042时火焰周期动态过程

    Figure 19.  Dynamic process of flame cycle at $ \phi $=0.042

    图 20  $ \phi $=0.084时火焰周期动态过程

    Figure 20.  Dynamic process of flame cycle at $ \phi $=0.084

    图 21  $ \phi $=0.084时5.5 ms时刻火焰局部放大图

    Figure 21.  Local magnification of flame at moment of 5.5 ms at $ \phi $=0.084

    图 22  $ \phi $=0.115时火焰周期动态过程

    Figure 22.  Dynamic process of flame cycle at $ \phi $=0.115

    图 23  $ \phi $=0.115时5.5 ms时刻火焰局部放大图

    Figure 23.  Local magnification of flame at moment of 5.5 ms at $ \phi $=0.115

    表  1  实验工况参数

    Table  1.   Experimental working condition parameters

    工况 燃料质量流量/(g·s−1) 空气质量流量/(g·s−1) 当量比$ \phi $
    1 0.179 98 0.031
    2 0.238 98 0.042
    3 0.298 98 0.052
    4 0.357 98 0.063
    5 0.417 98 0.073
    6 0.476 98 0.084
    7 0.536 98 0.094
    8 0.596 98 0.105
    9 0.655 98 0.115
    10 0.715 98 0.125
    11 0.774 98 0.136
    下载: 导出CSV
  • [1] 金莉, 谭永华. 火焰稳定器综述[J]. 火箭推进, 2006, 32(1): 30-34.

    JIN L, TAN Y H. Review of flame stabilizer[J]. Journal of Rocket Propulsion, 2006, 32(1): 30-34 (in Chinese).
    [2] LOVETT J, BROGAN T, PHILIPPONA D, et al. Development needs for advanced afterburner designs[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit. Reston: AIAA, 2004: 4192.
    [3] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling[M]. Reston: American Institute of Aeronautics and Astronautics, 2005: 4.
    [4] HAN X, LAERA D, MORGANS A S, et al. Inlet temperature driven supercritical bifurcation of combustion instabilities in a lean premixed prevaporized combustor[J]. Experimental Thermal and Fluid Science, 2019: 109: 109857.
    [5] SHANBHOGUE S J, HUSAIN S, LIEUWEN T. Lean blowoff of bluff body stabilized flames: Scaling and dynamics[J]. Progress in Energy and Combustion Science, 2009, 35(1): 98-120. doi: 10.1016/j.pecs.2008.07.003
    [6] TUTTLE S G, CHAUDHURI S, KOPP-VAUGHAN K M, et al. Lean blowoff behavior of asymmetrically-fueled bluff body-stabilized flames[J]. Combustion and Flame, 2013, 160(9): 1677-1692.
    [7] LUBARSKY E, CROSS C, FRICKER A, et al. Dynamics of V-gutter-stabilized Jet-A flames in a single flame holder combustor with full optical accesss[C]//Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit. Reston: AIAA, 2009: 5291.
    [8] POINSOT T J, TROUVE A C, VEYNANTE D P, et al. Vortex-driven acoustically coupled combustion instabilities[J]. Journal of Fluid Mechanics. 2006, 177: 265-292.
    [9] PILLAI A L, NAGAO J, AWANE R, et al. Influences of liquid fuel atomization and flow rate fluctuations on spray combustion instabilities in a backward-facing step combustor[J]. Combustion and Flame, 2020, 220: 337-356. doi: 10.1016/j.combustflame.2020.06.031
    [10] LIU W J, WANG H, YANG Q, et al. Flow dynamics in a multiswirler model combustor based on large eddy simulation and proper orthogonal decomposition analysis[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(12): 121014.
    [11] LIU W J, XUE R, ZHANG L, et al. Nonlinear response of a premixed low-swirl flame to acoustic excitation with large amplitude[J]. Combustion and Flame, 2022, 235: 2180.
    [12] KIM K T, LEE J G, QUAY B D, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion and Flame, 2010, 157: 1731-1744. doi: 10.1016/j.combustflame.2010.04.006
    [13] SHANBHOGUE S, SHIN D H, HEMCHANDRA S, et al. Flame sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing[J]. Proceedings of the Combustion Institute. 2009, 32(2): 1787-1794.
    [14] BENJAMIN A B, SATHESH M. Lock-in phenomenon of vortex shedding in flows excited with two commensurate frequencies: A theoretical investigation pertaining to combustion instability[J]. Journal of Fluid Mechanics, 2021, 925(409): 9.
    [15] EMERSON B, MONDRAGON U, ACHARYA V, et al. Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, Part Ⅰ: Experiments and data analysis[J]. Combustion Science and Technology, 2013, 185: 1056-1076.
    [16] LI H G, SUNG H, YANG V. Large eddy simulation of combustion dynamics of bluff body stabilized flame[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 783.
    [17] EMERSON B, LIEUWEN T. Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary[J]. Journal of Fluid Mechanics, 2015, 779: 716-750.
    [18] AHN M, LIM D, KIM T, et al. Pinch-off process of Burke–Schumann flame under acoustic excitation[J]. Combustion and Flame, 2021, 231: 111478-111488. doi: 10.1016/j.combustflame.2021.111478
    [19] FUGGER C A, CASWELL A W. The influence of spanwise nonuniformity on lean blowoff in bluff body stabilized turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6327-6335. doi: 10.1016/j.proci.2020.06.145
    [20] KOSTKA S, LYNCH A C, HUELSKAMP B C, et al. Characterization of flame-shedding behavior behind a bluff-body using proper orthogonal decomposition[J]. Combustion and Flame, 2012, 159(9): 2872-2882. doi: 10.1016/j.combustflame.2012.03.021
    [21] RICHARDS A, JANUS M C. Characterization of oscillations during premix gas turbine combustion[J]. Journal of Engineering for Gas Turbines and Power, 1998, 120(2): 294-302. doi: 10.1115/1.2818120
    [22] 王欣尧, 韩啸, 林宇震, 等. 中心分级旋流火焰中热声不稳定分岔现象研究[J]. 燃烧科学与技术, 2021, 27(4): 382-387.

    WANG X Y, HAN X, LIN Y Z, et al. Research on thermoacoustic instability bifurcation phenomenon in centrally graded swirling flames[J]. Combustion Science and Technology, 2021, 27(4): 382-387(in Chinese).
    [23] LI J X, MORGANS A S. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach[J]. Journal of Sound and Vibration, 2015, 346: 345-360. doi: 10.1016/j.jsv.2015.01.032
    [24] TAKENS F. Detecting strange attractors in turbulence[C]//Dynamic Systems and Turbulence, Warwick 1980. Berlin: Springer, 1981: 366-381.
    [25] 葛逸飞, 李森, 魏小林. 利用相空间重构方法分析层流扩散火焰燃烧不稳定现象[J]. 工程热物理学报, 2020, 41(6): 1550-1555.

    GE Y F, LI S, WEI X L. An analysis of laminar co-flow diffusion flame inatability based on phase space reconstruction method[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1550-1555(in Chinese).
    [26] FU X, YANG F J, GUO Z H. Combustion instability of pilot flame in a pilot bluff body stabilized combustor[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1606-1615.
    [27] CHAUDHURI S, KOSTKA S, TUTTLE S G, et al. Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor[J]. Combustion and Flame, 2011, 158(7): 1358-1371. doi: 10.1016/j.combustflame.2010.11.012
    [28] SINGH G, MARIAPPAN S. Experimental investigation on the route to vortex-acoustic lock-in phenomenon in bluff body stabilized combustors[J]. Combustion Science and Technology, 2019, 193: 1538-1566.
    [29] HARDI J S, ZACH HALLUM W, HUANG C, et al. Approaches for comparing numerical simulation of combustion instability and flame imaging[J]. Journal of Propulsion and Power, 2016, 32: 279-294. doi: 10.2514/1.B35780
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  77
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 录用日期:  2022-08-12
  • 网络出版日期:  2022-09-14
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答