留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双小行星系统表面动力学环境分析

王雅平 王悦 吴晓杰 甘庆波 杨志涛 张耀

王雅平,王悦,吴晓杰,等. 双小行星系统表面动力学环境分析[J]. 北京航空航天大学学报,2024,50(3):940-950 doi: 10.13700/j.bh.1001-5965.2022.0286
引用本文: 王雅平,王悦,吴晓杰,等. 双小行星系统表面动力学环境分析[J]. 北京航空航天大学学报,2024,50(3):940-950 doi: 10.13700/j.bh.1001-5965.2022.0286
WANG Y P,WANG Y,WU X J,et al. Surface dynamical environment analysis of a binary asteroid system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):940-950 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0286
Citation: WANG Y P,WANG Y,WU X J,et al. Surface dynamical environment analysis of a binary asteroid system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):940-950 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0286

双小行星系统表面动力学环境分析

doi: 10.13700/j.bh.1001-5965.2022.0286
基金项目: 国家自然科学基金(11872007);空间碎片与近地小行星防御科研项目(KJSP2020020205);中央高校基本科研业务费专项资金
详细信息
    通讯作者:

    E-mail:ywang@buaa.edu.cn

  • 中图分类号: V412.4+1

Surface dynamical environment analysis of a binary asteroid system

Funds: National Natural Science Foundation of China (11872007); Space Debris and Near-Earth Asteroid Defense Research Project (KJSP2020020205); The Fundamental Research Funds for the Central Universities
More Information
  • 摘要:

    双小行星系统在太阳系中普遍存在,具有独特的探测价值,揭示其表面动力学环境是实现表面巡游探测的关键。相比于单小行星,双星系统成员间的摄动作用对表面动力学环境存在影响,需要加以专门的分析和研究。以近地双小行星系统(66391) Moshup为例,主、次星均采用多面体引力场模型,通过推导质点在主、次星表面附近的动力学方程,计算出主、次星的表面等效重力和表面坡度,以及表面各点处的最小和最大起飞速度,分析分布规律和成因,特别关注次星对高速旋转主星的周期性潮汐力的影响。在此研究结果的基础上,针对主星和次星分析适合探测器着陆和表面巡游的区域。结果表明:由于旋转离心力的影响,主、次星表面的等效重力分布有随纬度减小而降低的趋势,而坡度主要与局部地形相关,主星的北极高纬度区域和次星南北纬80°以上的区域坡度小,且等效重力较大,适合作为探测器的着陆点或开展表面巡游;次星潮汐力对主星表面重力存在周期性影响;主星表面大部分区域的最小起飞速度小于0.3 m/s,次星表面大部分区域的最小起飞速度在0.10~0.25 m/s之间。由于自转影响,主、次星的最小起飞速度方向几乎全部朝东。

     

  • 图 1  双小行星系统附近的质点

    Figure 1.  A particle near a binary asteroid system

    图 2  顶点的法向量示意图

    Figure 2.  Normal vector diagram of vertex

    图 3  主星表面等效重力

    Figure 3.  Equivalent gravity on primary asteroid surface

    图 4  次星表面等效重力

    Figure 4.  Equivalent gravity on secondary asteroid surface

    图 5  主星表面坡度

    Figure 5.  Slope on primary asteroid surface

    图 6  次星表面坡度

    Figure 6.  Slope on secondary asteroid surface

    图 7  主星等效重力的周期图像

    Figure 7.  Periodic image of equivalent gravity on primary asteroid

    图 8  主星自身引力

    Figure 8.  Gravitational force on primary asteroid

    图 9  主星离心力

    Figure 9.  Centrifugal force on primary asteroid

    图 10  次星对主星的潮汐力

    Figure 10.  Tidal force of secondary against primary asteroid

    图 11  次星对主星潮汐力的周期图像

    Figure 11.  Periodic image of tidal force of the secondary against primary asteroid

    图 12  表面粒子的动力学分析

    Figure 12.  Dynamics analysis of surface particle

    图 13  $\phi = 30^\circ $时主星表面最小起飞速度

    Figure 13.  Minimum lift-off velocity on primary asteroid surface when $\phi = 30^\circ $

    图 14  $\phi = 30^\circ $时主星表面最大起飞速度

    Figure 14.  Maximum lift-off velocity on primary asteroid surface when $\phi = 30^\circ $

    图 15  不可起飞速度为50 m/s时主星表面最大起飞速度

    Figure 15.  Maximum lift-off velocity on primary asteroid surface when upper limit lift-off velocity is 50 m/s

    图 16  $\phi = 30^\circ $时次星表面最小起飞速度

    Figure 16.  Minimum lift-off velocity on secondary asteroid surface when $\phi = 30^\circ $

    图 17  $\phi = 30^\circ $时次星表面最大起飞速度

    Figure 17.  Maximum lift-off velocity on secondary asteroid surface when $\phi = 30^\circ $

    表  1  双小行星系统(66391) Moshup的基本参数

    Table  1.   Basic parameters of the binary asteroid (66391) Moshup

    行星 质量/
    (1012 kg)
    密度/
    (kg·m−3)
    自转周期/h 尺寸/km 双星距离/km
    主星 2.353 1970 2.7645 1.532×1.495×1.347 2.54
    次星 0.135 2810 17.4223 0.571×0.463×0.349 2.54
    下载: 导出CSV
  • [1] MARGOT J L, NOLAN M C, BENNER L A M, et al. Binary asteroids in the near-Earth object population[J]. Science, 2002, 296(5572): 1445-1448. doi: 10.1126/science.1072094
    [2] SHI Y, WANG Y, XU S J. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example[J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130(4): 32-36.
    [3] WERNER R A. The gravitational potential of a homogeneous polyhedron or don’t cut corners[J]. Celestial Mechanics and Dynamical Astronomy, 1994, 59: 253-278.
    [4] 张振江, 崔祜涛, 任高峰. 不规则形状小行星引力环境建模及球谐系数求取方法[J]. 航天器环境工程, 2010, 27(3): 383-388. doi: 10.3969/j.issn.1673-1379.2010.03.024

    ZHANG Z J, CUI H T, REN G F. Modeling of gravitational environment of irregular shaped asteroids and methods for obtaining spherical harmonic coefficients[J]. Spacecraft Environment Engineering, 2010, 27(3): 383-388(in Chinese). doi: 10.3969/j.issn.1673-1379.2010.03.024
    [5] LIANG C H, YUN Z. Methods for computing the gravitational potential of a small solar body[J]. Applied Mechanics and Materials, 2012, 241-244: 2787-2791.
    [6] SAWAI S, KAWAGUCHI J, OGASAWARA M, et al. Development of a target marker for landing on asteroids[J]. Journal of Spacecraft and Rockets, 2001, 38(4): 601-608. doi: 10.2514/2.3723
    [7] LIU X D, BAOYIN H X, MA X R. Dynamics of surface motion on a rotating massive homogeneous body[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(4): 818-829. doi: 10.1007/s11433-013-5044-2
    [8] YU Y, BAOYIN H X. Modeling of migrating grains on asteroid’s surface[J]. Astrophysics and Space Science, 2015, 355(1): 43-56. doi: 10.1007/s10509-014-2140-3
    [9] JIANG Y, ZHANG Y, BAOYIN H X. Surface motion relative to the irregular celestial bodies[J]. Planetary and Space Science, 2016, 127: 33-43. doi: 10.1016/j.pss.2016.04.007
    [10] FERRARI F, TANGA P. The role of fragment shapes in the simulations of asteroids as gravitational aggregates[J]. Icarus, 2020, 350: 113871. doi: 10.1016/j.icarus.2020.113871
    [11] LIU X W, YANG H W, LI S, et al. Lift-off velocity on the surface of a binary asteroid system[J]. Acta Astronautica, 2020, 170: 302-319. doi: 10.1016/j.actaastro.2020.02.006
    [12] ZHANG Y L, LI J F, ZENG X Y. The dynamical environments analysis of surface particles for different shaped asteroids[J]. Advances in Space Research, 2021, 67(10): 3328-3342. doi: 10.1016/j.asr.2021.02.013
    [13] WERNER R A, SCHEERES D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy, 1996, 65(3): 313-344.
    [14] VAN WAL S, SCHEERES D J. The lift-off velocity on the surface of an arbitrary body[J]. Celestial Mechanics and Dynamical Astronomy, 2016, 125(1): 1-31. doi: 10.1007/s10569-016-9671-6
    [15] WANG Y, WU X J. Analysis of phobos’ dynamical environment considering effects of ephemerides and physical libration[J]. Monthly Notices of the Royal Astronomical Society, 2020, 497(1): 416-434. doi: 10.1093/mnras/staa1948
    [16] HAMANN B. Curvature approximation for triangulated surfaces[C]//Proceedings of the Geometric Modelling. Berlin: Springer, 1993, 8: 139-153.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  27
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 录用日期:  2022-06-05
  • 网络出版日期:  2022-06-15
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答