留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间积分方法的研究进展与挑战

邢誉峰 季奕 张慧敏

邢誉峰, 季奕, 张慧敏等 . 时间积分方法的研究进展与挑战[J]. 北京航空航天大学学报, 2022, 48(9): 1692-1701. doi: 10.13700/j.bh.1001-5965.2022.0288
引用本文: 邢誉峰, 季奕, 张慧敏等 . 时间积分方法的研究进展与挑战[J]. 北京航空航天大学学报, 2022, 48(9): 1692-1701. doi: 10.13700/j.bh.1001-5965.2022.0288
XING Yufeng, JI Yi, ZHANG Huiminet al. Advances and challenges in time integration methods[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1692-1701. doi: 10.13700/j.bh.1001-5965.2022.0288(in Chinese)
Citation: XING Yufeng, JI Yi, ZHANG Huiminet al. Advances and challenges in time integration methods[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1692-1701. doi: 10.13700/j.bh.1001-5965.2022.0288(in Chinese)

时间积分方法的研究进展与挑战

doi: 10.13700/j.bh.1001-5965.2022.0288
基金项目: 

国家自然科学基金 12172023

国家自然科学基金 11872090

详细信息
    通讯作者:

    邢誉峰, E-mail: xingyf@buaa.edu.cn

  • 中图分类号: O302

Advances and challenges in time integration methods

Funds: 

National Natural Science Foundation of China 12172023

National Natural Science Foundation of China 11872090

More Information
  • 摘要:

    时间积分方法是动力学常微分方程的一种有效数值求解工具,广泛应用于航空航天、土木工程、机械制造等工程领域的动力学分析。介绍了近几十年来时间积分方法的研究进展。回顾了该领域的经典工作,包括级数展开法、Runge-Kutta法和Newmark方法;介绍了为解决经典时间积分方法在精度、效率、耗散和稳定性方面的不足而发展出的先进时间积分方法,主要包括参数方法、高阶无条件稳定方法、保能量方法、线性多步法、复合方法和BN稳定型方法;分析比较了已有方法的性能特点和适用范围,指出了时间积分方法发展中值得关注的若干问题。

     

  • [1] HUGHES T J R. The finite element method: Linear static and dynamic finite element analysis[M]. Upper Saddle River: Prentice-Hall Press, 1987.
    [2] BUTCHER J C. Numerical methods for ordinary differential equations[M]. New York: John Wiley & Sons, Ltd, 2016.
    [3] DAHLQUIST G G. A special stability problem for linear multistep methods[J]. BIT Numerical Mathematics, 1963, 3(1): 27-43. doi: 10.1007/BF01963532
    [4] KUHL D, CRISFIELD M A. Energy-conserving and decaying algorithms in nonlinear structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 569-599. doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
    [5] PARK K C. An improved stiffly stable method for direct integration of nonlinear structural dynamics[J]. Journal of Applied Mechanics-Transactions of the ASME, 1975, 42(2): 464-470. doi: 10.1115/1.3423600
    [6] 邵慧萍, 蔡承文. 结构动力学方程数值积分的三参数算法[J]. 应用力学学报, 1988, 5(4): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198804009.htm

    SHAO H P, CAI C W. A three parameters algorithm for numerical integration of structural dynamic equations[J]. Chinese Journal of Applied Mechanics, 1988, 5(4): 77-81(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198804009.htm
    [7] CHUNG J, HULBERT G. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method[J]. Journal of Applied Mechanics-Transactions of the ASME, 1993, 60(2): 371-375. doi: 10.1115/1.2900803
    [8] CHUNG J, LEE J M. A new family of explicit time integration methods for linear and nonlinear structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1994, 37(23): 3961-3976. doi: 10.1002/nme.1620372303
    [9] HILBER H M, HUGHES T J R, TAYLOR R L. Algorithms in structural dynamics[J]. Earthquake Engineering and Structural Dynamics, 1977, 5: 283-292. doi: 10.1002/eqe.4290050306
    [10] WOOD W L, BOSSAK M, ZIENKIEWICZ O C. An alpha modification of Newmark's method[J]. International Journal for Numerical Methods in Engineering, 1980, 15(10): 1562-1566. doi: 10.1002/nme.1620151011
    [11] ZHANG H M, XING Y F. A three-parameter single-step time integration method for structural dynamic analysis[J]. Acta Mechanica Sinica, 2019, 35(1): 112-128. doi: 10.1007/s10409-018-0775-y
    [12] XING Y F, ZHANG H M. An efficient non-dissipative higher-order single-step integration method for long-term dynamics simulation[J]. International Journal of Structural Stability and Dynamics, 2018, 18(9): 1850113. doi: 10.1142/S0219455418501134
    [13] FUNG T C. Solving initial value problems by differential quadrature method: Part 1-First-order equations[J]. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1411-1427. doi: 10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
    [14] FUNG T C. Solving initial value problems by differential quadrature method: Part 2-Second-and higher-order equations[J]. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1429-1454. doi: 10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
    [15] KIM W, LEE J H. A comparative study of two families of higher-order accurate time integration algorithms[J]. International Journal of Computational Methods, 2020, 17(8): 1950048. doi: 10.1142/S0219876219500488
    [16] FUNG T C. Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms: Part 1: First-order equations[J]. International Journal for Numerical Methods in Engineering, 1999, 45(8): 941-971. doi: 10.1002/(SICI)1097-0207(19990720)45:8<941::AID-NME612>3.0.CO;2-S
    [17] JI Y, XING Y F. An improved higher-order time integration algorithm for structural dynamics[J]. CMES-Computer Modelling in Engineering & Sciences, 2021, 126(2): 549-575.
    [18] FUNG T C. Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms: Part 2: Second-order equations[J]. International Journal for Numerical Methods in Engineering, 1999, 45(8): 971-1006. doi: 10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M
    [19] BELYTSCHKO T, SCHOEBERLE D F. On the unconditional stability of an implicit algorithm for nonlinear structural dynamics[J]. Journal of Applied Mechanics-Transactions of the ASME, 1975, 42(4): 865-869. doi: 10.1115/1.3423721
    [20] LAVRENÇIÇ M, BRANK B. Comparison of numerically dissipative schemes for structural dynamics: Generalized-alpha versus energy-decaying methods[J]. Thin-Walled Structures, 2020, 157: 107075. doi: 10.1016/j.tws.2020.107075
    [21] ZHANG H M, XING Y F, JI Y. An energy-conserving and decaying time integration method for general nonlinear dynamics[J]. International Journal for Numerical Methods in Engineering, 2020, 121(5): 925-944. doi: 10.1002/nme.6251
    [22] HUGHES T J R, CAUGHEYV T K, LIU W K. Finite-element methods for nonlinear elastodynamics which conserve energy[J]. Journal of Applied Mechanics-Transactions of the ASME, 1978, 45(2): 366-370. doi: 10.1115/1.3424303
    [23] WU B, PAN T L, YANG H W, et al. Energy-consistent integration method and its application to hybrid testing[J]. Earthquake Engineering and Structural Dynamics, 2020, 49(5): 415-433. doi: 10.1002/eqe.3246
    [24] ZHANG R, ZHONG H Z. A quadrature element formulation of an energy-momentum conserving algorithm for dynamic analysis of geometrically exact beams[J]. Computers & Structures, 2016, 165: 96-106.
    [25] KRENK S. Global format for energy-momentum based time integration in nonlinear dynamics[J]. International Journal for Numerical Methods in Engineering, 2014, 100(6): 458-476. doi: 10.1002/nme.4745
    [26] GONZALEZ O. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(13-14): 1763-1783. doi: 10.1016/S0045-7825(00)00189-4
    [27] MAMOURI S, HAMMADI F, IBRAHIMBEGOVIC A. Decaying/conserving implicit scheme and non-linear instability analysis of 2D frame structures[J]. International of Journal Non-Linear Mechanics, 2014, 67: 144-152. doi: 10.1016/j.ijnonlinmec.2014.08.011
    [28] ORDEN J C. Energy and symmetry-preserving formulation of nonlinear constraints and potential forces in multibody dynamics[J]. Nonlinear Dynamics, 2019, 95: 823-837. doi: 10.1007/s11071-018-4598-y
    [29] KUHL D, EKKELARD R. Constraint energy momentum algorithm and its application to non-linear dynamics of shells[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 136(3-4): 293-315. doi: 10.1016/0045-7825(95)00963-9
    [30] SIMO J C, WONG K K. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1): 19-52. doi: 10.1002/nme.1620310103
    [31] JI Y, XING Y F. A two-step time integration method with desirable stability for nonlinear structural dynamics[J]. European Journal of Mechanics-A/Solids, 2022, 94: 104582. doi: 10.1016/j.euromechsol.2022.104582
    [32] ZHANG J. A-stable linear two-step time integration methods with consistent starting and their equivalent single-step methods in structural dynamics analysis[J]. International Journal for Numerical Methods in Engineering, 2021, 122(9): 2312-2359. doi: 10.1002/nme.6623
    [33] ZHANG H M, ZHANG R S, MASARATI P. Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methods[J] Computational Mechanics, 2021, 67: 289-313. doi: 10.1007/s00466-020-01933-y
    [34] DONG S. BDF-like methods for nonlinear dynamic analysis[J]. Journal of Computational Physics, 2010, 229(8): 3019-3045. doi: 10.1016/j.jcp.2009.12.028
    [35] ZHANG J. A-stable two-step time integration methods with controllable numerical dissipation for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2020, 121(1): 54-92. doi: 10.1002/nme.6188
    [36] YANG C, WANG X, LI Q, et al. An improved explicit integration algorithm with controllable numerical dissipation for structural dynamics[J]. Archive of Applied Mechanics, 2020, 90: 2413-2431. doi: 10.1007/s00419-020-01729-9
    [37] REZAIEE-PAJAND M, SARAFRAZI S R. A mixed and multi-step higher-order implicit time integration family[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(10): 2097-2108. doi: 10.1243/09544062JMES2093
    [38] ZHOU X, TAMMA K K. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2004, 59(5): 597-668. doi: 10.1002/nme.873
    [39] LI J Z, YU K P. Development of composite sub-step explicit dissipative algorithms with truly self-starting property[J]. Nonlinear Dynamics, 2021, 103: 1-26. doi: 10.1007/s11071-020-06053-z
    [40] JI Y, XING Y F. Optimization of a class of n-sub-step time integration methods for structural dynamics[J] International Journal of Applied Mechanics, 2021, 13(6): 2150064. doi: 10.1142/S1758825121500642
    [41] LIU T H, HUANG F L, WEN W B, et al. Further insights of a composite implicit time integration scheme and its performance on linear seismic response analysis[J]. Engineering Structures, 2021, 241: 112490. doi: 10.1016/j.engstruct.2021.112490
    [42] XING Y F, JI Y, ZHANG H M. On the construction of a type of composite time integration methods[J] Computers & Structures, 2019, 221: 157-178.
    [43] JI Y, XING Y F. An optimized three-sub-step composite time integration method with controllable numerical dissipation[J] Computers & Structures, 2020, 231: 106210.
    [44] NOH G, BATHE K J. The Bathe time integration method with controllable spectral radius: The ρ-Bathe method[J] Computers & Structures, 2019, 212: 299-310.
    [45] KIM W. An improved implicit method with dissipation control capability: The simple generalized composite time integration algorithm[J]. Applied Mathematical Modelling, 2020, 81: 910-930. doi: 10.1016/j.apm.2020.01.043
    [46] BATHE K J, BAIG M M I. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers & Structures, 2005, 83(31-32): 2513-2524.
    [47] LI J Z, ZHAO R, YU K P, et al. Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 389: 114274. doi: 10.1016/j.cma.2021.114274
    [48] WEN W B, WEI K, LEI H S, et al. A novel sub-step composite implicit time integration scheme for structural dynamics[J]. Computers & Structures, 2017, 182: 176-186. doi: 10.11897/SP.J.1016.2017.00176
    [49] NOH G, HAM S, BATHE K J. Performance of an implicit time integration scheme in the analysis of wave propagations[J]. Computers & Structures, 2013, 123: 93-105.
    [50] CHANDRA Y, ZHOU Y, STANCIULESCU I, et al. A robust composite time integration scheme for snap-through problems[J]. Computational Mechanics, 2015, 55: 1041-1056. doi: 10.1007/s00466-015-1152-3
    [51] KOLAY C, RICLES J M. Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation[J]. Earthquake Engineering and Structural Dynamics, 2014, 43(9): 1361-1380. doi: 10.1002/eqe.2401
    [52] KOLAY C, RICLES J M. Improved explicit integration algorithms for structural dynamic analysis with unconditional stability and controllable numerical dissipation[J]. Journal of Earthquake Engineering, 2019, 23(5): 771-792. doi: 10.1080/13632469.2017.1326423
    [53] DU X Q, YANG D X, ZHOU J L, et al. New explicit integration algorithms with controllable numerical dissipation for structural dynamics[J]. International Journal of Structural Stability and Dynamics, 2018, 18(3): 1850044. doi: 10.1142/S021945541850044X
    [54] LI J Z, YU K P. Noniterative integration algorithms with controllable numerical dissipations for structural dynamics[J]. International Journal of Computer Mathematics, 2018, 15(3): 1850111.
    [55] BURRAGE K, BUTCHER J C. Stability criteria for implicit Runge-Kutta methods[J]. SIAM Journal on Numerical Analysis, 1979, 16(1): 46-57. doi: 10.1137/0716004
    [56] JI Y, XING Y F, WIERCIGROCH M. An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics[J]. Nonlinear Dynamics, 2021, 105: 3341-3358. doi: 10.1007/s11071-021-06720-9
    [57] HUANG C, FU M H. A composite collocation method with low-period elongation for structural dynamics problems[J]. Computers & Structures, 2018, 195: 74-84.
    [58] KIM W, REDDY J N. A new family of higher-order time integration algorithms for the analysis of structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2017, 84: 071008.
    [59] HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft[J]. Journal of the Aeronautical Sciences, 1950, 17(9): 540-550. doi: 10.2514/8.1722
    [60] BANK R E, COUGHRAN W M, FICHTNER W, et al. Transient simulations of silicon devices and circuits[J]. IEEE Transactions on Electro Devices, 1985, 32(10): 1992-2007. doi: 10.1109/T-ED.1985.22232
    [61] BATHE K J. Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme[J]. Computers & Structures, 2007, 85(7-8): 437-445.
    [62] ZAKIAN P, BATHE K J. Transient wave propagations with the propagations with the Noh-Bathe scheme and the spectral element method[J]. Computers & Structures, 2021, 254: 106531.
    [63] TAMMA K K, HAR J, ZHOU X M, et al. An overview and recent advances in vector and scalar formalisms: Space/time discretizations in computational dynamics-A unified approach[J]. Archives of Computational Methods in Engineering, 2011, 18: 119-283. doi: 10.1007/s11831-011-9060-y
    [64] 邢誉峰, 张慧敏, 季奕. 动力学常微分方程的时间积分方法[M]. 北京: 科学出版社, 2022.

    XING Y F, ZHANG H M, JI Y. Time integration methods in dynamic ordinary differential equations[M]. Beijing: Science Press, 2022(in Chinese).
    [65] ZHONG W X, WILLIAMS F W. A precise time step integration method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1994, 208(6): 427-430. doi: 10.1243/PIME_PROC_1994_208_148_02
    [66] XING Y F, ZHANG H M, WANG Z K. Highly precise time integration method for linear structural dynamic analysis[J]. International Journal for Numerical Methods in Engineering, 2018, 116(8): 505-529. doi: 10.1002/nme.5934
    [67] JI Y, XING Y F. Highly precise and efficient solution strategy for linear heat conduction and structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2022, 123(2): 366-395. doi: 10.1002/nme.6859
    [68] 邢誉峰, 郭静. 与结构动特性协同的自适应Newmark方法[J]. 力学学报, 2012, 44(5): 904-911. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205013.htm

    XING Y F, GUO J. A self-adaptive Newmark method with parameters dependent upon structural dynamic characteristics[J] Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 904-911(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205013.htm
    [69] 邢誉峰, 杨蓉. 单步辛算法的相位误差分析及修正[J]. 力学学报, 2007, 39(5): 668-671. doi: 10.3321/j.issn:0459-1879.2007.05.013

    XING Y F, YANG R. Phase errors and their correction in symplectic implicit single-step algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics 2007, 39(5): 668-671(in Chinese). doi: 10.3321/j.issn:0459-1879.2007.05.013
    [70] FENG K, QIN M Z. Hamiltonian algorithm for Hamiltonian dynamical systems[J]. Progress in Natural Science, 1991, 1(2): 105-116.
  • 加载中
图(1)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  90
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 录用日期:  2022-05-18
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回
    常见问答