留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机液压泵二维性能退化的可靠性评估

王少萍 陈仁同 张超

王少萍, 陈仁同, 张超等 . 飞机液压泵二维性能退化的可靠性评估[J]. 北京航空航天大学学报, 2022, 48(9): 1613-1623. doi: 10.13700/j.bh.1001-5965.2022.0297
引用本文: 王少萍, 陈仁同, 张超等 . 飞机液压泵二维性能退化的可靠性评估[J]. 北京航空航天大学学报, 2022, 48(9): 1613-1623. doi: 10.13700/j.bh.1001-5965.2022.0297
WANG Shaoping, CHEN Rentong, ZHANG Chaoet al. Reliability estimation for aircraft hydraulic pump based on bivariate performance degradation analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1613-1623. doi: 10.13700/j.bh.1001-5965.2022.0297(in Chinese)
Citation: WANG Shaoping, CHEN Rentong, ZHANG Chaoet al. Reliability estimation for aircraft hydraulic pump based on bivariate performance degradation analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1613-1623. doi: 10.13700/j.bh.1001-5965.2022.0297(in Chinese)

飞机液压泵二维性能退化的可靠性评估

doi: 10.13700/j.bh.1001-5965.2022.0297
基金项目: 

国家自然科学基金国际合作重点项目 51620105010

国家科技重大专项 J2019-V-0016-0111

详细信息
    通讯作者:

    王少萍, E-mail: shaopingwang@buaa.edu.cn

  • 中图分类号: V215.7;TP206+.3

Reliability estimation for aircraft hydraulic pump based on bivariate performance degradation analysis

Funds: 

NSFC Projects of International Cooperation and Exchanges 51620105010

National Science and Technology Major Project J2019-V-0016-0111

More Information
  • 摘要:

    飞机液压泵为飞机操纵、起落架收放和刹车提供高压能源,其安全性和可靠性至关重要。针对飞机液压泵二维退化可靠性评估问题,构建了基于液压泵微观表面混合润滑的转子-配流盘摩擦副和轴尾密封副的摩擦磨损退化模型,基于统一随机过程模型描述2个性能指标的退化规律,利用Copula函数表征二维性能退化的相关关系,使用贝叶斯马尔可夫链蒙特卡罗法得到其考虑二元相关退化模型的未知参数估计,进而对飞机液压泵进行了可靠性评估。通过液压泵回油流量及轴尾密封摩擦力矩2个性能退化指标的实际退化数据,验证了所提出的理论和方法。结果表明,考虑2个性能退化指标相关的退化模型有效提高了可靠性评估及寿命预测精度。

     

  • 图 1  柱塞式液压泵的转子-配流盘摩擦副

    Figure 1.  Valve plate-cylinder block friction of piston pump

    图 2  柱塞式液压泵的配流盘表面形貌

    Figure 2.  Surfare topography of valve plate for piston pump

    图 3  柱塞式液压泵转子-配流盘微观关系

    Figure 3.  Detailed relationship of valve plate-cylinder block for piston pump

    图 4  柱塞式液压泵转子-配流盘间的油膜厚度、压力和温度变化

    Figure 4.  Oil film thickness, pressure and temperature distribution between valve plate-cylinder block for piston pump

    图 5  柱塞式液压泵转子-配流盘润滑磨粒磨损

    Figure 5.  Abrasive wear of valve plate-cylinder block for piston pump

    图 6  轴尾机械密封动环与静环间的润滑区域

    Figure 6.  Lubrication area between moving ring and stationary ring of axial pump mechanical seal

    图 7  微凸体接触示意图

    Figure 7.  Contact relation of rough surface

    图 8  液压泵回油流量退化曲线

    Figure 8.  Degradation paths for return oil flow of hydraulic pump

    图 9  液压泵轴尾密封磨损摩擦力矩退化曲线

    Figure 9.  Degradation paths for friction torque of axial pump mechanical seal

    图 10  模型中未知参数的后验分布

    Figure 10.  Posterior distribution for unknown parameters in degradation model

    图 11  回油流量、轴尾密封摩擦力矩独立与考虑2个性能指标相关性液压泵可靠度随时间曲线

    Figure 11.  Reliability curves with time for only considering return oil flow, only considering friction torque and both two dependent performance indicators

    表  1  统一随机过程模型定义

    Table  1.   Definition of unified stochastic process model

    模型 α(t) β(t)
    维纳过程 μΛ(t) σ2Λ(t)
    逆高斯过程 μΛ(t)
    伽马过程
    下载: 导出CSV

    表  2  模型中未知参数估计结果

    Table  2.   Estimation results for unknown parameters in degradation model

    性能指标 μ σ q
    X1 1.189 0.528 1.027
    X2 1.098 0.171 9 1.069
    注:相关系数θ=0.874 0。
    下载: 导出CSV
  • [1] 焦宗夏, 孔祥东, 王少萍, 等. 大型飞机电液动力控制与作动系统新体系基础研究[J]. 中国基础科学, 2018, 20(2): 41-47. doi: 10.3969/j.issn.1009-2412.2018.02.006

    JIAO Z X, KONG X D, WANG S P, et al. Advancements of basic researches on large aircraft of electro-hydraulic power and actuation system new architecture[J]. China Basic Science, 2018, 20(2): 41-47(in Chinese). doi: 10.3969/j.issn.1009-2412.2018.02.006
    [2] SHI C, WANG S P, WANG X J, et al. Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft[J]. Chinese Journal of Aeronautics, 2018, 31(5): 949-964. doi: 10.1016/j.cja.2018.01.005
    [3] 王少萍. 液压泵计算机辅助测试及故障诊断研究[D]. 北京: 北京航空航天大学, 1994.

    WANG S P. Computer aided test and fault diagnosis to hydraulic pump[D]. Beijing: Beihang University, 1994(in Chinese).
    [4] GUO S R, CHEN J H, LU Y L, et al. Hydraulic piston pump in civil aircraft: Current status, future directions and critical technologies[J]. Chinese Journal of Aeronautics, 2020, 33(1): 16-30. doi: 10.1016/j.cja.2019.01.013
    [5] HUNT T M. Condition monitoring of ship borne hydraulic pump[D]. Bath: University of Bath, 1981.
    [6] LANGEN H J. Early detection of damage in hydraulic components by measurements of structure-borne sound[J]. Oelhydraul. Pneum, 1981, 25(7): 568-573.
    [7] IVANTYSYNOVA M, LASAAR R. An investigation into micro- and macrogeometric design of piston/cylinder assembly of swash plate machines[J]. International Journal of Fluid Power, 2004, 5(1): 23-36. doi: 10.1080/14399776.2004.10781181
    [8] PELOSI M, IVANTYSYNOVA M. A novel thermal model for the piston/cylinder interface of piston machines[C]//Proceedings of ASME 2009 Dynamic Systems and Control Conference. New York: ASME, 2010: 37-44.
    [9] PPELOSI M, IVANTYSYNOVA M. Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines[J]. Journal of Tribology, 2012, 134(4): 041101. doi: 10.1115/1.4006980
    [10] KASSEM S A, BAHR M K. Effect of port plate silencing grooves on performance of swash plate axial piston pumps[C]// Current Advances in Mechanical Design and Production Ⅶ. Amsterdam: Elsevier, 2000: 139-148.
    [11] HONG Y S, LEE S Y, KIM S H, et al. Improvement of the low-speed friction characteristics of a hydraulic piston pump by PVD-coating of TiN[J]. Journal of Mechanical Science and Technology, 2006, 20(3): 358-365. doi: 10.1007/BF02917518
    [12] FANG Y, SHIRAKASHI M. Mixed lubrication characteristics between the piston and cylinder in hydraulic piston pump-motor[J]. Journal of Tribology, 1995, 117(1): 80-85. doi: 10.1115/1.2830610
    [13] MANRING N D. Friction forces within the cylinder bores of swash-plate type axial-piston pumps and motors[J]. Journal of Dynamic Systems, Measurement, and Control, 1999, 121(3): 531-537. doi: 10.1115/1.2802507
    [14] YAMAGUCHI A, MATSUOKA H. A mixed lubrication model applicable to bearing/seal parts of hydraulic equipment[J]. Journal of Tribology, 1992, 114(1): 116-121. doi: 10.1115/1.2920849
    [15] KAZAMA T, YAMAGUCHI A. Application of a mixed lubrication model for hydrostatic thrust bearings of hydraulic equipment[J]. Journal of Tribology, 1993, 115(4): 686-691. doi: 10.1115/1.2921694
    [16] 诸葛起, 路甬祥. 用振动信号检测柱塞泵松靴故障[J]. 振动、测试与诊断, 1989, 9(3): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS198903003.htm

    ZHUGE Q, LU Y X. Using vibration signal to detect failure of piston pump's slipper pair[J]. Journal of Vibration, Measurement & Diagnosis, 1989, 9(3): 11-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS198903003.htm
    [17] 徐兵, 李迎兵, 张斌, 等. 轴向柱塞泵滑靴副倾覆现象数值分析[J]. 机械工程学报, 2010, 46(20): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201020028.htm

    XU B, LI Y B, ZHANG B, et al. Numerical simulation of overturning phenomenon of axial piston pump slipper pair[J]. Journal of Mechanical Engineering, 2010, 46(20): 161-168(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201020028.htm
    [18] 刘洪, 苑士华, 彭增雄. 轴向柱塞泵滑靴油膜动态仿真[J]. 北京理工大学学报, 2011, 31(11): 1282-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201111005.htm

    LIU H, YUAN S H, PENG Z X. Dynamic simulation of slipper bearings in axial piston pumps[J]. Transactions of Beijing Institute of Technology, 2011, 31(11): 1282-1286(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201111005.htm
    [19] 刘思远, 王闯, 杨梦雪, 等. 斜盘泵滑靴副剧烈磨损过程的动态特性分析[J]. 液压与气动, 2017(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201701001.htm

    LIU S Y, WANG C, YANG M X, et al. Analysis of dynamic characteristics for severe wear process of swash plate axial piston pump slipper pair[J]. Chinese Hydraulics & Pneumatics, 2017(1): 1-5(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201701001.htm
    [20] 杨光琴. 多传感器航空液压系统信息融合故障诊断研究[D]. 北京: 北京航空航天大学, 2003.

    YANG G Q. Multi-sensors fusion based fault diagnosis of aerial hydraulic system[D]. Beijing: Beihang University, 2003(in Chinese).
    [21] 张文超. 机载液压泵源健康管理[D]. 北京: 北京航空航天大学, 2008.

    ZHANG W C. Health management of airborne hydraulic pump[D]. Beijing: Beihang University, 2008(in Chinese).
    [22] 赵四军. 飞机液压泵源故障预测与健康管理系统关键技术研究[D]. 北京: 北京航空航天大学, 2010.

    ZHAO S J. Fault prognostics and health management of aircraft hydraulic power supply[D]. Beijing: Beihang University, 2010(in Chinese).
    [23] 杜隽. 航空液压能源系统动态失效机理与健康管理关键技术研究[D]. 北京: 北京航空航天大学, 2012.

    DU J. Fault mechanism and health management of aviation hydraulic system[D]. Beijing: Beihang University, 2012(in Chinese).
    [24] 何兆民. 航空液压泵健康状态识别与故障预测关键技术研究[D]. 北京: 北京航空航天大学, 2014.

    HE Z M. Health state identification and fault prediction of aircraft hydraulic pump[D]. Beijing: Beihang University, 2014(in Chinese).
    [25] 卢传奇. 基于分层递进的航空液压系统故障诊断与寿命预测研究[D]. 北京: 北京航空航天大学, 2017.

    LU C Q. Fault diagnosis and life prediction of aircraft hydraulic system based on hierarchical progression[D]. Beijing: Beihang University, 2017(in Chinese).
    [26] 贺文涛. 旋转机械密封失效机理与寿命预测研究[D]. 北京: 北京航空航天大学, 2020.

    HE W T. Failure mechanism and life prediction of rotating machinery seal[D]. Beijing: Beihang University, 2020(in Chinese).
    [27] MA Z H, WANG S P, LIAO H T, et al. Engineering-driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process[J]. Quality and Reliability Engineering International, 2019, 35(7): 2278-2296.
    [28] CHEN R T, ZHANG C, WANG S P, et al. Reliability estimation of mechanical seals based on bivariate dependence analysis and considering model uncertainty[J]. Chinese Journal of Aeronautics, 2021, 34(5): 554-572.
    [29] ZHANG C, CHEN R T, BAI G H, et al. Reliability estimation of rotary lip seal in aircraft utility system based on time-varying dependence degradation model and its experimental validation[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2230-2241.
    [30] 张超. 星载传动机构加速寿命试验理论及评估方法研究[D]. 北京: 北京航空航天大学, 2012.

    ZHANG C. Accelerated life test and evaluation of spaceborne transmission mechanism[D]. Beijing: Beihang University, 2012(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  123
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 录用日期:  2022-05-29
  • 网络出版日期:  2022-06-21

目录

    /

    返回文章
    返回
    常见问答