留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁超声横波的管道剩余厚度检测

徐立军 刘福禄 丁一清 李正勇 谢跃东

徐立军, 刘福禄, 丁一清, 等 . 基于电磁超声横波的管道剩余厚度检测[J]. 北京航空航天大学学报, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301
引用本文: 徐立军, 刘福禄, 丁一清, 等 . 基于电磁超声横波的管道剩余厚度检测[J]. 北京航空航天大学学报, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301
XU Lijun, LIU Fulu, DING Yiqing, et al. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301(in Chinese)
Citation: XU Lijun, LIU Fulu, DING Yiqing, et al. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301(in Chinese)

基于电磁超声横波的管道剩余厚度检测

doi: 10.13700/j.bh.1001-5965.2022.0301
基金项目: 

国家自然科学基金 61901022

上海航天科技创新基金 118SAST2021117001

中央高校基本科研业务费 YWF-19-BJ-J-358

详细信息
    通讯作者:

    谢跃东,E-mail: yuedongxie@buaa.edu.cn

  • 中图分类号: TB51+7

Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave

Funds: 

National Natural Science Foundation of China 61901022

Shanghai Academy of Spaceflight Technology Funds 118SAST2021117001

The Fundamental Research Funds for the Central Universities YWF-19-BJ-J-358

More Information
  • 摘要:

    为实现管道剩余厚度的精确检测,设计了一种基于电磁超声横波的非接触式管道厚度检测系统。采用自研的电磁超声大功率激励源与换能器产生测厚横波,并由接收器对回波电压信号进行实时滤波和处理,得到铝制管道的精确剩余厚度。针对电磁超声回波的小信号和低信噪比对激励线圈参数进行优化,在此基础上对横波声束在圆形管道界面辐射特性进行分析。根据换能器线圈匝数、线圈宽度分别为回波信号峰峰值和信噪比的最大影响因子,设计优化后检测换能器并实现了误差小于0.2%的剩余厚度检测。

     

  • 图 1  典型的横波电磁超声换能器示意图

    Figure 1.  Schematic diagram of a typical shear wave electromagnetic acoustic transducer

    图 2  横波电磁超声有限元仿真模型

    Figure 2.  Shear wave electromagnetic acoustic finite element simulation model

    图 3  横波电磁超声回波电压信号

    Figure 3.  Shear wave electromagnetic acoustic echo voltage signal

    图 4  横波在管道壁中声束辐射图

    Figure 4.  Schematic of beam radiation of shear wave in pipe wall

    图 5  横波在管道壁中声波指向性图

    Figure 5.  Energy distribution of shear wave in acoustic directivity of pipe wall

    图 6  电磁超声激励用PCB螺旋线线圈

    Figure 6.  Spiral PCB coil for electromagnetic acoustic excitation

    图 7  电磁超声脉冲激励信号

    Figure 7.  Electromagnetic acoustic pulse excitation signal

    图 8  管道剩余厚度测试系统

    Figure 8.  Pipeline residual thickness test system

    图 9  横波电磁超声实际回波电压信号

    Figure 9.  Actual echo voltage signal of shear wave electromagnetic acoustic

    表  1  电磁超声换能器参数优化范围

    Table  1.   Electromagnetic acoustic tranolucer parameter optimization range

    线圈匝数 线圈宽度/mm 线圈间距/mm
    4 0.2 0.8
    6 0.4 1.0
    8 0.6 1.2
    下载: 导出CSV

    表  2  横波电磁超声换能器参数正交测试阵列

    Table  2.   Shear wave electromagnetic acoustic transducer parameter orthogonal test array

    试验号 线圈匝数 线圈宽度/mm 线圈间距/mm 峰峰值/mV 信噪比/dB
    1 4 0.2 1.0 0.285 8 14.218
    2 6 0.2 0.8 0.243 9 15.095
    3 8 0.2 1.2 0.144 4 9.768
    4 4 0.4 0.8 0.316 7 15.559
    5 6 0.4 1.2 0.193 1 18.129
    6 8 0.4 1.0 0.172 0 15.657
    7 4 0.6 1.2 0.243 9 15.458
    8 6 0.6 1.0 0.213 5 16.682
    9 8 0.6 0.8 0.197 7 18.603
    下载: 导出CSV

    表  3  正交试验结果分析

    Table  3.   Analysis of orthogonal experiment results

    分析因子 对峰峰值影响 对信噪比影响
    Kcn1 2.8×10-4 15.08
    Kcn2 2.2×10-4 16.64
    Kcn3 1.7×10-4 14.68
    Rcn 1.1×10-4 1.96
    Kω1 2.2×10-4 13.03
    Kω2 2.3×10-4 16.45
    Kω3 2.2×10-4 16.91
    Rω 8.9×10-6 3.89
    Kl1 2.5×10-4 16.42
    Kl2 2.2×10-4 15.52
    Kl3 1.9×10-4 14.45
    Rl 5.9×10-5 1.97
    下载: 导出CSV
  • [1] YOSHIDA M, ASANO T. A new method to measure the oxide layer thickness on steels using electromagnetic acoustic resonance[J]. Journal of Nondestructive Evaluation, 2003, 22: 11-19. doi: 10.1023/A:1025776030607
    [2] HOBBIS A, ARULESWARAN A. Non-contact thickness and profile measurements of rolled aluminium strip using EMAT[C]//AIP Conference, 2006, 820: 1772-1779.
    [3] PARRA-RAAD J, KHALILI P, CEGLA F. Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs[J]. NDT & E International, 2020, 111: 1-7.
    [4] 王相豪. 电磁超声测厚系统的设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018: 63-69.

    WANG X H. Design and realization of electromagnetic ultrasonic thickness measurement system[D]. Harbin: Harbin Engineering University, 2018: 63-69(in Chinese).
    [5] 唐志峰, 孙兴涛, 张鹏飞, 等. 集测厚与导波检测于一体的复合式电磁超声换能器研究[J]. 仪器仪表学报, 2020, 41(9): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202009011.htm

    TANG Z F, SUN X T, ZHANG P F, et al. Research on composite electromagnetic ultrasonic transducer integrating thickness measurement and guided wave detection[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 98-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202009011.htm
    [6] 孙峥, 李永虔, 杨金旭, 等. 管道内检测电磁超声在线测厚装置[J]. 中国测试, 2017, 43(2): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201702014.htm

    SUN Z, LI Y W, YANG J X, et al. Thickness gauging equipment for ILI of pipelines using EMATs[J]. China Measurement & Test, 2017, 43(2): 69-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201702014.htm
    [7] 黄松岭, 王坤, 赵伟. 电磁超声导波理论与应用[M]. 北京: 清华大学出版社, 2013: 2-29.

    HUANG S L, WANG K, ZHAO W. Theory and application electromagnetic ultrasonic guided wave[M]. Beijing: Tsinghua University Press, 2013: 2-29(in Chinese).
    [8] RIBICHINI R, NAGY P, OGI H. The impact of magnetostriction on the transduction of normal bias field emats[J]. NDT & E International, 2012, 51: 8-15.
    [9] MIRKHANI K, CHAGGARES C, MASTERSON C, et al. Optimal design of EMAT transmitters[J]. NDT & E International, 2004, 37(3): 181-193.
    [10] JIA X J, QI O Y. Optimal design of point-focusing shear vertical wave electromagnetic ultrasonic transducers based on orthogonal test method[J]. IEEE Sensors Journal, 2018, 18(19): 8064-8073.
    [11] YUAN W, LIU Z, LI Y, et al. Comparative analysis of emat receiving process between ferromagnetic and nonferromagnetic materials[C]//2019 IEEE International Ultrasonics Symposium (IUS). Piscataway: IEEE Press, 2019: 611-614.
    [12] KANG L, DIXON S, WANG K C, et al. Enhancement of signal amplitude of surface wave EMATs based on 3D simulation analysis and orthogonal test method[J]. Ndt & E International, 2013, 59: 11-17.
    [13] HUANG S L, ZHAO W, ZHANG Y S, et al. Study on the lift-off effect of EMAT[J]. Sensors and Actuators A: Physical, 2009, 153(2): 218-221.
    [14] 唐旭明, 阳能军, 李平. 电磁超声横波换能器中永磁体的建模与优化[J]. 无损探伤, 2017, 41(6): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201706005.htm

    TANG X M, YANG N J, LI P. Modeling method and optimum design of permanent magnet in elctromagnetic acoustic shear wave transduceers[J]. NDT, 2017, 41(6): 17-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201706005.htm
    [15] PENG J, DONG F, XU Q, et al. Orthogonal test design for optimization of supercritical fluid extraction of daphnoretin, 7-methoxy-daphnoretin and 1, 5-diphenyl-1-pentanone from Stellera chamaejasme L. and subsequent isolation by high-speed counter-current chromatography[J]. Journal of Chromatography A, 2006, 1135(2): 151-157.
    [16] AUGUSTYNIAK M, USAREK Z. Finite element method applied in electromagnetic NDTE: A review[J]. Journal of Nondestructive Evaluation, 2016, 35(3): 1-15.
    [17] DAVID J, CHEEKE N. Fundamentals and applications of ultrasonic waves[M]. 2nd ed. Boca Raton: CRC Press, 2010: 76-90.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  90
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 录用日期:  2022-05-18
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回
    常见问答