留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星基ADS-B系统及关键技术发展综述

张学军 谭元晧 李雪缘 简鑫慧

张学军, 谭元晧, 李雪缘, 等 . 星基ADS-B系统及关键技术发展综述[J]. 北京航空航天大学学报, 2022, 48(9): 1589-1604. doi: 10.13700/j.bh.1001-5965.2022.0309
引用本文: 张学军, 谭元晧, 李雪缘, 等 . 星基ADS-B系统及关键技术发展综述[J]. 北京航空航天大学学报, 2022, 48(9): 1589-1604. doi: 10.13700/j.bh.1001-5965.2022.0309
ZHANG Xuejun, TAN Yuanhao, LI Xueyuan, et al. A review of development of space-based ADS-B system and its key technologies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1589-1604. doi: 10.13700/j.bh.1001-5965.2022.0309(in Chinese)
Citation: ZHANG Xuejun, TAN Yuanhao, LI Xueyuan, et al. A review of development of space-based ADS-B system and its key technologies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1589-1604. doi: 10.13700/j.bh.1001-5965.2022.0309(in Chinese)

星基ADS-B系统及关键技术发展综述

doi: 10.13700/j.bh.1001-5965.2022.0309
详细信息
    通讯作者:

    张学军, E-mail: zhxj@buaa.edu.cn

  • 中图分类号: V19

A review of development of space-based ADS-B system and its key technologies

More Information
  • 摘要:

    广播式自动相关监视(ADS-B)系统是国际民航组织在空管全球化的背景下提出的新一代监视技术。相较陆基系统,星基ADS-B系统能够实现全球空域覆盖,可增强现有空管系统能力,促进国家低空空域开放与通航产业发展。概述了星基ADS-B的由来、概念及运行原理;介绍了星基ADS-B系统国内外发展概况与发展历程;针对微弱信号解调、多波束接收、解交织、防欺骗、星座设计、路由转发算法及监视性能评估等星基ADS-B关键技术梳理了国内外相关研究现状,介绍了北京航空航天大学联合团队在星基ADS-B上的研究工作与发射试验星情况;结合未来星基空管技术发展与应用需求对星基ADS-B系统发展趋势进行总结与展望。

     

  • 图 1  星基ADS-B系统总体架构

    Figure 1.  Overall architecture of space-based ADS-B system

    图 2  星基ADS-B系统运行原理

    Figure 2.  Space-based ADS-B system operation principle

    图 3  Proba-V观测到的飞机航迹[10]

    Figure 3.  Aircraft tracks observed by Proba-V[10]

    图 4  GOMX-3采集的全球ADS-B数据[14]

    Figure 4.  Global ADS-B data collected by GOMX-3[14]

    图 5  CanX-7在轨采集数据分布[18]

    Figure 5.  Distribution of CanX-7 in-orbit acquisition data[18]

    图 6  GlobalStar ADS-B(ALAS)飞行测试[19]

    Figure 6.  GlobalStar ADS-B (ALAS) flight test[19]

    图 7  Spire的AIS与ADS-B数据[23]

    Figure 7.  Spire dataset of AIS and ADS-B[23]

    图 8  铱星二代卫星星座轨道示意图[25]

    Figure 8.  Iridium-Next satellites orbit diagram[25]

    图 9  “铱星二代”星基ADS-B系统获取的全球空中交通数据[29]

    Figure 9.  Air traffic data captured globally by Iridium-Next space-based ADS-B system[29]

    图 10  “天拓三号”ADS-B数据获得的2018年5月全球飞机静态分布图[34]

    Figure 10.  Static distribution of global aircraft obtained from TianTuo-3 ADS-B dataset in May 2018[34]

    图 11  STU-2一个月获取的飞机数据[37]

    Figure 11.  STU-2 captured aircraft data over one month[37]

    图 12  北航星基ADS-B技术验证星

    Figure 12.  Beihang space-based ADS-B technology verification satellite

    图 13  北航星基ADS-B系统技术验证星获取的全球航空器分布

    Figure 13.  Global aircraft distribution obtained by Beihang space-based ADS-B technology verification satellite

    表  1  Aireon星基ADS-B系统设计监视性能指标

    Table  1.   Surveillance performance metrics for Aireon's space-based ADS-B system

    监视性能指标 取值
    数据链 1090ES
    监视数据格式 ASTERIX CAT021, CAT023, CAT025
    监视范围 ≥99%(全球)
    可用性 ≥99.9%
    传输延迟 ≤1.5 s
    报文更新间隔 ≤8 s(95%概率)
    下载: 导出CSV

    表  2  铱星二代星基ADS-B系统测试指标

    Table  2.   Iridium-Next space-based ADS-B system test metrics

    技术指标 测试场景 取值
    报文更新间隔 冰岛凯夫拉维克国际机场 ≤8 s(99%)
    冰岛、加拿大实测 ≤2 s(绝大部分)
    传输延迟 星到地面实测 226 ms(均值)
    312 ms(95%)
    345 ms(99%)
    加拿大实测 ≤50 ms(95%)
    数据更新频率 北大西洋Gander FIR 2.87 s(95%)
    北大西洋Shanwick FIR 3.36 s(95%)
    Nav Canada非繁忙空域 < 2.8 s(95%)
    下载: 导出CSV
  • [1] 中国民用航空局. 中国民用航空ADS-B实施规划[S]. 北京: 中国民用航空局, 2012: 1-45.

    Civil Aviation Administration of China. ADS-B implementation plan for civil aviation in China[S]. Beijing: Civil Aviation Administration of China, 2012: 1-45(in Chinese).
    [2] International Civil Aviation Organization Asia and Pacific Office. Guidance material on comparison of surveillance technologies (GMST)[R]. Montreal: ICAO, 2007: 1-44.
    [3] BLOMENHOFER H, PAWLITZKI A, ROSENTHAL P, et al. Space-based automatic dependent surveillance broadcast (ADS-B) payload for in-orbit demonstration[C]//2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC). Piscataway: IEEE Press, 2012: 160-165.
    [4] Canada. The concept of space-based reception of automatic dependent surveillance-broadcast(ADS-B): A38-WP/132[R]. Montreal: ICAO, 2013: 2-3.
    [5] Flight Safety Foundation. Benefits analysis of space-based ADS-B[R]. Alexandria: Flight Safety Foundation, 2016: 18-35.
    [6] 中国民用航空局. 中国民航航空器追踪监控体系建设实施路线图[S]. 北京: 中国民用航空局, 2017: 1-7.

    Civil Aviation Administration of China. Implementation roadmap for the construction of aircraft tracking and monitoring system for civil aviation in China[S]. Beijing: Civil Aviation Administration of China, 2017: 1-7(in Chinese).
    [7] 马斌. 卫星系统将为全球航班跟踪保驾护航[J]. 中国无线电, 2015(11): 20. doi: 10.3969/j.issn.1672-7797.2015.11.025

    MA B. Satellite system will escort global flight tracking[J]. China Radio, 2015(11): 20(in Chinese). doi: 10.3969/j.issn.1672-7797.2015.11.025
    [8] ICAO Western and Central Africa Office. ASEPS using ADS-B trials in parts of the nat airspace: SAT/24-WP/17[R]. Montreal: ICAO, 2019: 2-4.
    [9] BRODSKY Y, RIEBER R, NORDHEIM T. Balloon-borne air traffic management (ATM) as a precursor to space-based ATM[J]. Acta Astronautica, 2012, 70: 112-121. doi: 10.1016/j.actaastro.2011.06.013
    [10] DELOVSKI T, WERNER K, RAWLIK T, et al. ADS-B over satellite the world ' s first ADS-B receiver in space[C]//Small Satellite Systems and Services Symposium, 2014.
    [11] WERNER K, BREDEMEYER J, DELOVSKI T. ADS-B over satellite: Global air traffic surveillance from space[C]//2014 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV). Piscataway: IEEE Press, 2014: 47-52.
    [12] ALMINDE L K, CHRISTIANSEN J, LAURSEN K K, et al. GOMX-1: A nano-satellite mission to demonstrate improved situational awareness for air traffic control[C]//26th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2012.
    [13] ALMINDE L, KAAS K, BISGAARD M, et al. GOMX-1 flight experience and air traffic monitoring results[C]//28th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2014.
    [14] GomSpace. GOMX-3 (GomSpace Express-3)[EB/OL]. (2015-10-02)[2022-03-25]. https://directory.eoportal.org/web/eoportal/satellite-missions/g/gomx-3.
    [15] LÉON L, KOCH P, WALKER R. GOMX-4: The twin European mission for IOD purposes[C]//32nd Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2018.
    [16] GomSpace. GomX-4 (GomSpace Express-4) mission[EB/OL]. (2017-09-06)[2022-03-25]. https://directory.eoportal.org/web/eoportal/satellite-missions/g/gomx-4.
    [17] VINCENT R, VAN DER PRYT R. The CanX-7 nanosatellite ADS-B mission: A preliminary assessment[J]. Positioning, 2017, 8(1): 1-11. doi: 10.4236/pos.2017.81001
    [18] BENNETT I, COTTEN B, ZEE R E. On-orbit results from the CanX-7 ADS-B payload[C]//11th IAA Symposium on Small Satellites for Earth Observation, 2017.
    [19] HENRY C, VAN WAGENEN J. Global, ADS-B technologies complete space-based aircraft tracking demonstration[EB/OL]. (2014-09-18)[2022-04-12]. https://www.aviationtoday.com/2014/09/18/global-adsb-technologies-complete-space-based-aircraft-tracking-demonstration/.
    [20] RAY J. Space-based ADS-B[EB/OL]. (2013-09-01)[2022-04-12]. https://www.aviationtoday.com/2013/09/01/space-based-ads-b/.
    [21] BAKER K. Space-based ADS-B: Performance, architecture and market options[C]//2019 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2019: 1-18.
    [22] TRAUTVETTER C. Spire to provide lower-cost ADS-B aircraft tracking[EB/OL]. (2016-12-05)[2022-03-26]. https://www.ainonline.com/aviation-news/aerospace/2016-12-05/spire-provide-lower-cost-ads-b-aircraft-tracking.
    [23] CAPPAERT J. The spire small satellite network[M]//PELTON J N, MADRY S. Handbook of small satellites: Technology, design, manufacture, applications, economics and regulation. Berlin: Springer, 2020: 1101-1121.
    [24] Spire(Lemur / Minas)[EB/OL]. (2021-12-26)[2022-04-08]. https://www.newspace.im/constellations/spire.
    [25] AIREON. Global ATS Surveillance[EB/OL]. [2022-04-06]. https://aireon.com/products/global-ats-surveillance/.
    [26] GARCIA M A, DOLAN J, HOAG A. Aireon's initial on-orbit performance analysis of space-based ADS-B[C]//2017 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2017: 4A1-1.
    [27] GARCIA M A, DOLAN J, HABER B, et al. A compilation of measured ADS-B performance characteristics from Aieron's on-orbit test program[C]//international symposium Enhanced Solutions for Aircraft and Vehicle Surveillance Applications, 2018.
    [28] CANSO. Space-based ADS-B lifts off[EB/OL]. (2019-05-14)[2022-04-06]. https://canso.org/airspace-q2-2019-space-based-ads-b-lifts-off/.
    [29] BELLAMY W. EASA issues first space-based ADS-B surveillance as a service certification[EB/OL]. (2019-06-30)[2022-04-06]. https://www.aviationtoday.com/2019/06/05/easa-issues-first-space-based-ads-b-surveillance-as-a-service-certification/.
    [30] PICOLA BARÉ A. Study of the benefits and applications of LEO (low Earth orbit) for communications and definition of space new business plan: Surveillance & broadcast for aircraft[D]. Barcelona: Universitat Politècnica de Catalunya, 2021: 14-15.
    [31] HARRISON R. Using satellites to improve air traffic control coverage[EB/OL]. (2022-02-09)[2022-04-10]. https://spaceaustralia.com/news/using-satellites-improve-air-traffic-control-coverage.
    [32] CANSO. ENAIRE and Indra will launch a constellation of satellites into orbit to improve air traffic management[EB/OL]. (2021-05-18)[2022-04-09]. https://canso.org/enaire-and-indra-will-launch-a-constellation-of-satellites-into-orbit-to-improve-air-traffic-management/.
    [33] HENRY C. Portuguese company embarks on first domestic satellite project[EB/OL]. (2017-11-10)[2022-04-09]. https://spacenews.com/portuguese-company-embarks-on-first-domestic-satellite-project/.
    [34] CHEN L H, YU S Q, CHEN Q, et al. Data reception analysis of ADS-B on board the TianTuo-3 satellite[J]. Journal of Physics: Conference Series, 2020, 1438(1): 012030. doi: 10.1088/1742-6596/1438/1/012030
    [35] NI J S, CHEN L H, YU S Q, et al. Analysis and application of spaceborne mode S and ADS-B data fusion[C]//2021 International Conference on Big Data Engineering and Education (BDEE). Piscataway: IEEE Press, 2021: 51-55.
    [36] 倪久顺, 陈利虎, 余孙全, 等. 星载ADS-B相关研究进展及展望[J]. 中国空间科学技术, 2022, 42(1): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202201003.htm

    NI J S, CHEN L H, YU S Q, et al. A review for space-based ADS-B[J]. Chinese Space Science and Technology, 2022, 42(1): 30-37(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202201003.htm
    [37] WU S, CHEN W, CHAO C. The STU-2 CubeSat mission and in-orbit test results[C]//30th AIAA/USU Conference on Small Satellites, 2016.
    [38] 北京和德宇航技术有限公司. "天行者"星座和应用服务[EB/OL]. [2022-04-09]. http://www.head-aerospace.com/#/Mainwork/Skywalker.

    China HEAD Aerospace Technology Co. "Skywalker" constellation and application services[EB/OL]. [2022-04-09]. http://www.head-aerospace.com/#/Mainwork/Skywalker (in Chinese).
    [39] 李国利, 朱霄雄. 高分九号03星发射成功搭载发射皮星三号A星、和德五号卫星[J]. 科技传播, 2020, 12(13): 1. doi: 10.3969/j.issn.1674-6708.2020.13.026

    LI G L, ZHU X X. Gaofen IX 03 successfully launched with the launch of Pixin Ⅲ A and He De V satellites[J]. Public Communication of Science & Technology, 2020, 12(13): 1(in Chinese). doi: 10.3969/j.issn.1674-6708.2020.13.026
    [40] RTCA. Minimum operational performance standards (MOPS) for 1 090 MHz extended squitter automatic dependent surveillance-broadcast (ADS-B) and traffic information services-broadcast (TIS-B): DO-260B[S]. Washington, D.C. : RTCA, 2011.
    [41] DELOVSKI T, BREDEMEYER J, WERNER K. ADS-B over satellite coherent detection of weak Mode-S signals from low earth orbit[C]//Small Satellites Systems and Services, 2016.
    [42] 余孙全, 陈利虎, 李松亭, 等. 高灵敏度星载ADS-B信号解调算法[J]. 太赫兹科学与电子信息学报, 2018, 16(5): 886-891. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201805030.htm

    YU S Q, CHEN L H, LI S T, et al. High sensitivity detection algorithm for space-based ADS-B[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(5): 886-891(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201805030.htm
    [43] REN P, WANG J X, SONG H W, et al. A novel multi-criteria preamble detection algorithm for ADS-B signals[J]. IEEE Access, 2019, 7: 97319-97332. doi: 10.1109/ACCESS.2019.2929830
    [44] QIN J X, YANG J. Design and implementation of spaceborne ADS-B message detection algorithm[J]. DEStech Transactions on Engineering and Technology Research, 2018, 298(8): 295-302.
    [45] ZHANG C Z, LI N R. The design and implementation of UAT mode ADS-B signal's RS decoder[C]//2014 23rd International Conference on Computer Communication and Networks (ICCCN). Piscataway: IEEE Press, 2014: 1-6.
    [46] ZHANG C Z, ZHANG C L, WANG Y. Enhanced ADS-B reception techniques research[C]//10th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2014). Piscataway: IEEE Press, 2014: 657-661.
    [47] REN P, WANG J X, ZHANG P X. Novel error correction algorithms for ADS-B signals with matched filter based decoding[J]. Physical Communication, 2019, 36: 100788. doi: 10.1016/j.phycom.2019.100788
    [48] PETROCHILOS N, VAN DER VEEN A J. Algorithms to separate overlapping secondary surveillance radar replies[C]//2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE Press, 2004: 2-49.
    [49] PETROCHILOS N, GALATI G, MENE L, et al. Separation of multiple secondary surveillance radar sources in a real environment by a novel projection algorithm[C]//Proceedings of the 5th IEEE International Symposium on Signal Processing and Information Technology. Piscataway: IEEE Press, 2005: 125-130.
    [50] PETROCHILOS N, GALATI G, PIRACCI E. Projection techniques for separation of multiple secondary surveillance radar sources in a real environment[C]//4th IEEE Workshop on Sensor Array and Multichannel Processing. Piscataway: IEEE Press, 2006: 344-348.
    [51] 陈为桢. 星载ADS-B中频接收机分离算法的研究与实现[D]. 成都: 电子科技大学, 2017: 1-59.

    CHEN W Z. The research and implementation of spaceborne ADS-B IF receiver separation algorithm[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 1-59(in Chinese).
    [52] 吴杰, 郭建华, 蒋凯, 等. ADS-B二重交织信号时域分离算法[J]. 通信技术, 2017, 50(10): 2184-2189. doi: 10.3969/j.issn.1002-0802.2017.10.009

    WU J, GUO J H, JIANG K, et al. ADS-B double intertwined signal separation algorithm in time domain[J]. Communications Technology, 2017, 50(10): 2184-2189(in Chinese). doi: 10.3969/j.issn.1002-0802.2017.10.009
    [53] 吴仁彪, 吴琛琛, 王文益. 基于累加分类的ADS-B交织信号处理方法[J]. 信号处理, 2017, 33(4): 572-576. doi: 10.16798/j.issn.1003-0530.2017.04.017

    WU R B, WU C C, WANG W Y. A method of overlapped ADS-B signal processing based on accumulation and classification[J]. Journal of Signal Processing, 2017, 33(4): 572-576(in Chinese). doi: 10.16798/j.issn.1003-0530.2017.04.017
    [54] WANG W Y, WU R B, LIANG J L. ADS-B signal separation based on blind adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6547-6556. doi: 10.1109/TVT.2019.2914233
    [55] YU S Q, CHEN L H, LI S T, et al. Separation of space-based ADS-B signals with single channel for small satellite[C]//2018 IEEE 3rd International Conference on Signal and Image Processing. Piscataway: IEEE Press, 2018: 315-321.
    [56] 刘慧, 倪育德, 刘鹏. 基于松弛改进FastICA算法的星基ADS-B信号分离[J]. 电讯技术, 2020, 60(2): 203-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DATE202002015.htm

    LIU H, NI Y D, LIU P. Space-based ADS-B signal separation based on loose modified FastICA[J]. Telecommunication Engineering, 2020, 60(2): 203-209(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DATE202002015.htm
    [57] ZHANG C S, ZHANG T, ZHANG H. Overlapping ADS-B signals separation algorithm based on MUSIC[C]//2019 6th International Conference on Information Science and Control Engineering (ICISCE). Piscataway: IEEE Press, 2019: 1094-1098.
    [58] LI K D, KANG J, REN H, et al. A reliable separation algorithm of ADS-B signal based on time domain[J]. IEEE Access, 2021, 9: 88019-88026. doi: 10.1109/ACCESS.2021.3082077
    [59] BETTRAY A, LITSCHKE O, BAGGEN L. Multi-beam antenna for space-based ADS-B[C]//2013 IEEE International Symposium on Phased Array Systems and Technology. Piscataway: IEEE Press, 2013: 227-231.
    [60] BUDROWEIT J, JAKSCH M P, DELOVSKI T. Design of a multi-channel ADS-B receiver for small satellite-based aircraft surveillance[C]//2019 IEEE Radio and Wireless Symposium. Piscataway: IEEE Press, 2019: 1-4.
    [61] YU S Q, CHEN L H, LI S T, et al. Adaptive multi-beamforming for space-based ADS-B[J]. Journal of Navigation, 2019, 72(2): 359-374. doi: 10.1017/S0373463318000735
    [62] YU S Q, CHEN L H, FAN C G, et al. Integrated antenna and receiver system with self-calibrating digital beamforming for space-based ADS-B[J]. Acta Astronautica, 2020, 170: 480-486. doi: 10.1016/j.actaastro.2020.02.001
    [63] AMIN S, CLARK T, OFFUTT R, et al. Design of a cyber security framework for ADS-B based surveillance systems[C]//2014 Systems and Information Engineering Design Symposium (SIEDS). Piscataway: IEEE Press, 2014: 304-309.
    [64] KACEM T, WIJESEKERA D, COSTA P, et al. Key distribution mechanism in secure ADS-B networks[C]//2015 Integrated Communication, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2015: 1-3.
    [65] GHOSE N, LAZOS L. Verifying ADS-B navigation information through Doppler shift measurements[C]//2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2015: 2A-4A.
    [66] KIM Y, JO J Y, LEE S. A secure location verification method for ADS-B[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2016: 1-10.
    [67] NAGANAWA J, TAJIMA H, MIYAZAKI H, et al. ADS-B anti-spoofing performance of monopulse technique with sector antennas[C]//2017 IEEE Conference on Antenna Measurements & Applications. Piscataway: IEEE Press, 2017: 87-90.
    [68] HABLER E, SHABTAI A. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages[J]. Computers & Security, 2018, 78: 155-173.
    [69] YING X H, MAZER J, BERNIERI G, et al. Detecting ADS-B spoofing attacks using deep neural networks[C]//2019 IEEE Conference on Communications and Network Security. Piscataway: IEEE Press, 2019: 187-195.
    [70] 吕宗平, 倪育德, 陈君, 等. 基于GNSS完好性的ADS-B防欺骗[J]. 雷达科学与技术, 2018, 16(4): 359-365. doi: 10.3969/j.issn.1672-2337.2018.04.002

    LYU Z P, NI Y D, CHEN J, et al. Anti-spoofing for ADS-B based on GNSS integrity[J]. Radar Science and Technology, 2018, 16(4): 359-365(in Chinese). doi: 10.3969/j.issn.1672-2337.2018.04.002
    [71] LI T Y, WANG B H, SHANG F T, et al. Dynamic temporal ADS-B data attack detection based on sHDP-HMM[J]. Computers & Security, 2020, 93: 101789.
    [72] 吴庆. 基于深度学习的ADS-B欺骗式干扰检测[D]. 天津: 中国民航大学, 2020: 1-48.

    WU Q. ADS-B spoofing detection based on deep learning[D]. Tianjin: Civil Aviation University of China, 2020: 1-48(in Chinese).
    [73] NGUYEN T H, TSAFNAT N, CETIN E, et al. Low-Earth orbit satellite constellation for ADS-B based in-flight aircraft tracking[J]. Advances in Aircraft and Spacecraft Science, 2015, 2(1): 95-108. doi: 10.12989/aas.2015.2.1.095
    [74] NAG S, RIOS J L, GERHARDT D, et al. CubeSat constellation design for air traffic monitoring[J]. Acta Astronautica, 2016, 128: 180-193. doi: 10.1016/j.actaastro.2016.07.010
    [75] CHEN C C, LIU Z Q, FAN W, et al. Design and application analysis of the global coverage satellite system for space aeronautics ATM information collection[C]//Space Information Networks, 2017, 688: 266-273.
    [76] LEYVA-MAYORGA I, SORET B, POPOVSKI P. Inter-plane inter-satellite connectivity in dense LEO constellations[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 3430-3443.
    [77] GUO J M, YANG L, CHEN Q, et al. Design of a low earth orbit satellite constellation network for air traffic surveillance[J]. Journal of Navigation, 2020, 73(6): 1263-1283.
    [78] DE WECK O L, DE NEUFVILLE R, CHAIZE M. Staged deployment of communications satellite constellations in low earth orbit[J]. Journal of Aerospace Computing, Information, and Communication, 2004, 1(3): 119-136.
    [79] LEE H W, JAKOB P C, HO K, et al. Optimization of satellite constellation deployment strategy considering uncertain areas of interest[J]. Acta Astronautica, 2018, 153: 213-228.
    [80] MOHORČIČ M, WERNER M, ŠVIGELJ A, et al. Alternate link routing for traffic engineering in packet-oriented ISL networks[J]. International Journal of Satellite Communications, 2001, 19(5): 463-480.
    [81] BAI J J, LU X C, LU Z X, et al. Compact explicit multi-path routing for LEO satellite networks[C]//2005 Workshop on High Performance Switching and Routing. Piscataway: IEEE Press, 2005: 386-390.
    [82] HUSSEIN M, ABU-ISSA A, ELAYYAN I. Location-aware load balancing routing protocol for LEO satellite networks[C]//2018 International Conference on Advanced Communication Technologies and Networking (CommNet). Piscataway: IEEE Press, 2018: 1-7.
    [83] TALEB T, MASHIMO D, JAMALIPOUR A, et al. SAT04-3: ELB: An explicit load balancing routing protocol for multi-hop NGEO satellite constellations[C]//IEEE Globecom 2006. Piscataway: IEEE Press, 2006: 1-5.
    [84] DONG C Y, XU X, LIU A J, et al. Research on new methods of LEO satellite networks routing[C]//2019 6th International Conference on Information Science and Control Engineering (ICISCE). Piscataway: IEEE Press, 2019: 495-499.
    [85] 叶红军, 刘亮, 贾诗雨. 星空地一体化航空安全监控体制设计[J]. 无线电工程, 2019, 49(9): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-WXDG201909010.htm

    YE H J, LIU L, JIA S Y. Design on satellite-air-ground integrated aviation safety monitoring system[J]. Radio Engineering, 2019, 49(9): 801-806(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXDG201909010.htm
    [86] 郑晓冬, 顾青涛, 鲍亚川, 等. 低轨航空安全监视星座路由规划算法设计与仿真[J]. 无线电通信技术, 2019, 45(3): 253-257. https://www.cnki.com.cn/Article/CJFDTOTAL-WXDT201903010.htm

    ZHENG X D, GU Q T, BAO Y C, et al. Design and simulation of low-orbit aviation surveillance constellation route algorithm[J]. Radio Communications Technology, 2019, 45(3): 253-257(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXDT201903010.htm
    [87] SCHÄFER M, STROHMEIER M, LENDERS V, et al. Bringing up OpenSky: A large-scale ADS-B sensor network for research[C]//Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. Piscataway: IEEE Press, 2014: 83-94.
    [88] VAN DER PRYT R, VINCENT R. A simulation of signal collisions over the North Atlantic for a spaceborne ADS-B receiver using aloha protocol[J]. Positioning, 2015, 6(3): 23-31.
    [89] GARCIA M A, STAFFORD J, MINNIX J, et al. Aireon space based ADS-B performance model[C]//2015 Integrated Communication, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2015: C1-C2.
    [90] 钟建华, 刘卫东, 王冬冬, 等. ADS-B监视数据质量分析研究[J]. 西安航空学院学报, 2013, 31(3): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-XHGZ201303023.htm

    ZHONG J H, LIU W D, WANG D D, et al. Analysis on ADS-B surveillance data quality[J]. Journal of Xi'an Aeronautical University, 2013, 31(3): 72-75(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XHGZ201303023.htm
    [91] 于克非. 星基ADS-B系统监视性能可用性评估[D]. 天津: 中国民航大学, 2018: 1-54.

    YU K F. Availability evaluation of surveillance performance on space-based ADS-B[D]. Tianjin: Civil Aviation University of China, 2018: 1-54(in Chinese).
    [92] 赵嶷飞, 于克非. 星基广播式自动相关监视系统监视数据空中位置信息质量分析[J]. 科学技术与工程, 2018, 18(14): 279-284. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201814050.htm

    ZHAO Y F, YU K F. Quality analysis of air position on space-based automatic dependent surveillance broadcast surveillance data[J]. Science Technology and Engineering, 2018, 18(14): 279-284(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201814050.htm
    [93] 王运帷. 陆基与星基ADS-B系统数据质量研究[D]. 天津: 中国民航大学, 2018: 1-92.

    WANG Y W. Research of land-based and space-based ADS-B system data quaility[D]. Tianjin: Civil Aviation University of China, 2018: 1-92(in Chinese).
    [94] 张学军, 李雪缘, 王子润. 一种适用于高灵敏度星载ADS-B接收机的信号处理方法: CN111884981B[P]. 2021-05-18.

    ZHANG X J, LI X Y, WANG Z R. Signal processing method suitable for high-sensitivity satellite-borne ADS-B receiver: CN111884981B[P]. 2021-05-18(in Chinese).
    [95] FENG T, LIANG J. Parameter estimation of weak space-based ADS-B signals using genetic algorithm[J]. ETRI Journal, 2021, 43(2): 324-331.
    [96] 冯涛, 梁俊. 基于反演策略的星基ADS-B信号译码方法[J]. 电子科技大学学报, 2020, 49(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202001011.htm

    FENG T, LIANG J. Space-based ADS-B signal decoding by inversion method[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(1): 64-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202001011.htm
    [97] 张学军, 简鑫慧, 黄如. 适用于星基ADS-B的低置信度矩阵可靠提取方法和检错纠错高性能方法: CN111865332A[P]. 2021-07-27.

    ZHANG X J, JIAN X H, HUANG R. Reliable low confidence matrix extraction method and high performance method of error detection and correction for space-based ADS-B: CN111865332A[P]. 2021-07-27(in Chinese).
    [98] 张学军, 王子润, 简鑫慧. 基于FPGA的星载ADS-B接收机的信号处理模块: CN112039578B[P]. 2021-05-04.

    ZHANG X J, WANG Z R, JIAN X H. Signal processing module of satellite ADS-B receiver based on FPGA: CN112039578B[P]. 2021-05-04(in Chinese).
    [99] LIU K, ZHANG T, DING Y. Blind signal separation algorithm for space-based ADS-B[C]//Proceedings of the 2016 International Conference on Mechatronics Engineering and Information Technology. Paris: Atlantis Press, 2016: 214-220.
    [100] 张涛, 丁洋, 刘雪飞. 信号碰撞分离方法和装置: CN107276937B[P]. 2020-02-18.

    ZHANG T, DING Y, LIU X F. Signal collision separation method and apparatus: CN107276937B[P]. 2020-02-18(in Chinese).
    [101] 李家蓬, 刘志刚, 安强, 等. 一种基于单通道ADS-B地面站的防欺骗综合解决方法: CN111142126B[P]. 2022-03-01.

    LI J P, LIU Z G, AN Q, et al. Anti-spoofing comprehensive solution based on single-channel ADS-B ground station: CN111142126B[P]. 2022-03-01(in Chinese).
    [102] 李家蓬, 安强, 付磊, 等. 一种基于四通道ADS-B地面站的防欺骗解决方法: CN110988865B[P]. 2021-08-10.

    LI J P, AN Q, FU L, et al. Anti-spoofing solution based on four-channel ADS-B ground station: CN110988865B[P]. 2021-08-10(in Chinese).
    [103] 安强, 李家蓬, 黄枭, 等. 基于信号TDOA计算的星基ADS-B目标验证[C]//中国航空学会航空电子与空中交通管理学术会议(CCATM2021)暨航电与空管分会2021年学术年会, 2021.

    AN Q, LI J P, HUANG X, et al. Satellite-based ADS-B target verification based on signal TDOA calculation[C]//Proceedings of the China Aviation Society Avionics and Air Traffic Management Conference (CCATM2021) and the 2021 Annual Academic Conference of the Avionics and ATC Branch, 2021(in Chinese).
    [104] 张涛, 张丽鑫, 范伟强. 基于星基ADS-B报文卫星网络的局部多径路由方法和装置: CN107241268A[P]. 2020-05-12.

    ZHANG T, ZHANG L X, FAN W Q. Method and apparatus for local multipath routing based on space-based ADS-B messaging satellite network: CN107241268A[P]. 2020-05-12(in Chinese).
    [105] 张涛, 曹思源, 龚思龙. 一种低轨道卫星网络拥塞控制方法及装置: CN110958640B[P]. 2021-07-20.

    ZHANG T, CAO S Y, GONG S L. Low-orbit satellite network congestion control method and device: CN110958640B[P]. 2021-07-20(in Chinese).
    [106] 范伟强. 空事卫星星上路由技术[D]. 北京: 北京航空航天大学, 2019: 1-57.

    FAN W Q. Research on low orbit satellite routing technology[D]. Beijing: Beihang University, 2019: 1-57(in Chinese).
    [107] WANG Y C, ZHANG X J, ZHANG T. A flooding-based routing algorithm for ADS-B packets transmission in LEO satellite network[C]//2019 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2019: 1-9.
    [108] 刘海涛, 王松林, 秦定本, 等. 星基ADS-B接收机监视容量分析[J]. 航空学报, 2018, 39(5): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805017.htm

    LIU H T, WANG S L, QIN D B, et al. Performance analysis of surveillance capacity of satellite-based ADS-B receiver[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 182-189(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805017.htm
    [109] 李少洋. 星基ADS-B监视性能仿真研究[D]. 天津: 中国民航大学, 2020: 1-61.

    LI S Y. Simulation study of satellite-based ADS-B surveillance performance[D]. Tianjin: Civil Aviation University of China, 2020: 1-61(in Chinese).
    [110] 张学军, 李雪缘. 所需监视性能可用性评估方法: CN111754817B[P]. 2021-06-01.

    ZHANG X J, LI X Y. Required monitoring performance availability evaluation method: CN111754817B[P]. 2021-06-01(in Chinese).
    [111] 张学军, 简鑫慧. 监视性能评估指标形成方法: CN111785095B[P]. 2021-06-01.

    ZHANG X J, JIAN X H. Monitoring performance index evaluation method: CN111785095B[P]. 2021-06-01(in Chinese).
    [112] 李雪缘, 张学军, 杨宁. 北航空事卫星一号监视应用分析[C]//中国航空学会航空电子与空中交通管理学术会议(CCATM2021)暨航电与空管分会2021年学术年会, 2021.

    LI X Y, ZHANG X J, YANG N. Analysis of Beihang aviation satellite-1 surveillance applications[C]//Proceedings of the China Aviation Society Avionics and Air Traffic Management Conference (CCATM2021) and the 2021 Annual Academic Conference of the Avionics and ATC Branch, 2021(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1360
  • HTML全文浏览量:  346
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 录用日期:  2022-06-09
  • 网络出版日期:  2022-07-04

目录

    /

    返回文章
    返回
    常见问答