-
摘要:
针对空中交通体系结构复杂、耦合性强、脆弱性高的特点,为缓解因受扰导致的级联失效现象,对其结构韧性进行研究。建立了空中交通信息物理系统(CPS)模型,提出同层度与层间度、同层介数与层间介数等指标,分析级联失效过程;提出空中交通CPS韧性的概念,并采用定量评估方法对受损能力和恢复能力进行度量;对比不同扰动-恢复策略下的空中交通CPS表现,制定最佳恢复策略,提高受扰时的韧性。以华东地区空中交通CPS为例进行分析,结果表明:空中交通CPS网络度分布服从幂率分布,介数服从指数分布;在基于介数度值扰动下,采用介数恢复策略可以有效提高受扰时空中交通CPS的韧性。
Abstract:An air traffic network is a multi-dimensional complex system, which becomes vulnerable due to the coupling relationship when disturbed. This research examines the structural resilience of the system to mitigate the cascading failures caused by disturbance. An air traffic cyber physical system (CPS) model is developed. The relevant indicators such as the intra-layer degree and inter-layer degree, and intra-layer betweenness and inter-layer betweenness are defined, and the cascading failure process is analyzed. The resilience of air traffic CPS is then proposed, and a quantitative assessment method is used to measure the system’s disturbance response and recovery capabilities. The performance of the air traffic CPS is compared under different perturbation-recovery strategies to improve its resilience when perturbed. The results show that the air traffic CPS network degree follows a power law distribution while the betweenness follows an exponential distribution. For both perturbation methods, betweenness recovery leads to fastest recovery of air traffic CPS performance.
-
[1] HU S Y, LIU C L, PIURI V. 信息物理系统专题简介[J]. 中国科学:信息科学, 2022, 52(2): 376.HU S Y, LIU C L, PIURI V. Introduction to information physical systems[J]. Science in China:Information Science, 2022, 52(2): 376(in Chinese). [2] 原豪男, 郭戈. 交通信息物理系统中的车辆协同运行优化调度[J]. 自动化学报, 2019, 45(1): 143-152.YUAN H N, GUO G. Vehicle cooperative optimization scheduling in transportation cyber physical systems[J]. Acta Automatica Sinica, 2019, 45(1): 143-152(in Chinese). [3] 徐春婕, 陈瑞凤, 贺晓玲, 等. 基于CPS的铁路客运站智能机房监控平台[J]. 计算机工程与设计, 2022, 43(2): 596-601.XU C J, CHEN R F, HE X L, et al. Intelligent computer room monitoring platform based on CPS for railway passenger station computer room[J]. Computer Engineering and Design, 2022, 43(2): 596-601(in Chinese). [4] LEVSHUN D, KOTENKO I, CHECHULIN A. The application of the methodology for secure cyber-physical systems design to improve the semi-natural model of the railway infrastructure[J]. Microprocessors and Microsystems, 2021, 87: 103482. doi: 10.1016/j.micpro.2020.103482 [5] CHEN C, LIU X M, QIU T, et al. A short-term traffic prediction model in the vehicular cyber-physical systems[J]. Future Generation Computer Systems, 2020, 105: 894-903. [6] CHEN W Q, ZHANG L C. Physical and cyber convergence approach to design future complex aviation cyber physical systems[C]//Proceedings of the 6th IEEE International Conference on Software Engineering and Service Science. Piscataway: IEEE Press, 2015: 541-544. [7] WANG X L, HE M. Influential node ranking and invulnerability of air traffic cyber physical system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(2): 288-297. [8] JEONG Y S, PARK J H. Adaptive network-based fuzzy inference model on CPS for large scale, intelligent and cooperative surveillance[J]. Computing, 2013, 95(10): 977-992. [9] WANG H J, ZHAO H T, ZHANG J, et al. Survey on unmanned aerial vehicle networks: A cyber physical system perspective[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1027-1070. [10] ROY S, SRIDHAR B. Cyber-threat assessment for the air traffic management system: A network controls approach[C]//Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 4354. [11] 郭九霞. 新一代民航运输系统安全韧性理论与方法研究[D]. 成都: 电子科技大学, 2021: 1-5.GUO J X. Research on the theory and method of safety and toughness of new generation civil aviation transportation system[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 1-5(in Chinese). [12] 高经东. 基于复杂网络的空域扇区网络分析及抗毁性研究[D]. 天津: 中国民航大学, 2018: 27-32.GAO J D. Analysis and invulnerability research of sectors network based on complex network[D]. Tianjin: Civil Aviation University of China, 2018: 27-32(in Chinese). [13] WU Y P, CHEN Z L, ZHAO X D, et al. Robust analysis of cascading failures in complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2021, 583: 156320. [14] 王兴隆, 贺敏, 刘明学. 空中交通CPS级联失效与缓解策略[J]. 北京航空航天大学学报, 2021, 47(12): 2426-2433.WANG X L, HE M, LIU M X. Air traffic CPS cascading failure and mitigation strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2426-2433(in Chinese). [15] HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E. A review of definitions and measures of system resilience[J]. Reliability Engineering & System Safety, 2016, 145: 4761. [16] 杨琦, 张雅妮, 周雨晴, 等. 复杂网络理论及其在公共交通韧性领域的应用综述[J]. 中国公路学报, 2022, 35(4): 215-229.YANG Q, ZHANG Y N, ZHOU Y Q, et al. A review of complex network theory and its application in the resilience of public transportation systems[J]. China Journal of Highway and Transport, 2022, 35(4): 215-229(in Chinese). [17] 范瀚文, 常征, 王聪. 海上运输通道关键节点安全韧性影响因素及评价[J]. 上海海事大学学报, 2022, 43(2): 40-46.FAN H W, CHANG Z, WANG C. Influencing factors and evaluation of safety resilience of key nodes in maritime transportation channels[J]. Journal of Shanghai Maritime University, 2022, 43(2): 40-46(in Chinese). [18] 马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析: 以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62(7): 1228-1235.MA S H, WU Y J, CHEN X F. Structural resilience of multimodal transportation networks in urban agglomerations: A case study of the Guanzhong Plain urban agglomeration network[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7): 1228-1235(in Chinese). [19] 王兴隆, 石宗北, 陈仔燕. 空中交通网络模体识别及子图结构韧性评估[J]. 航空学报, 2021, 42(7): 324715.WANG X L, SHI Z B, CHEN Z Y. Air traffic network motif recognition and sub-graph structure resilience evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324715(in Chinese). [20] WANG X L, MIAO S F, TANG J Q. Vulnerability and resilience analysis of the air traffic control sector network in China[J]. Sustainability, 2020, 12(9): 3749. doi: 10.3390/su12093749 [21] REN L, LIAO H, CASTILLO-EFFEN M, et al. Transformation of mission-critical applications in aviation to cyber-physical systems[M]//SONG H B, RAWAT D B, JESCHKE S, et al. Cyber-physical systems: Foundations, principles, and applications. Amsterdam: Elsevier, 2017: 339-362. [22] 徐开俊, 肖成坤, 杨泳, 等. 基于复杂网络理论的中国城市航空网络有向加权分析[J]. 科学技术与工程, 2021, 21(36): 15669-15673. doi: 10.3969/j.issn.1671-1815.2021.36.049XU K J, XIAO C K, YANG Y, et al. Directed weighted analysis of Chinese urban aviation network based on complex network theory[J]. Science Technology and Engineering, 2021, 21(36): 15669-15673(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.36.049 [23] 中国民用航空局. 民用航空空中交通管理规则: CCAR-93TM-R5[S]. 北京: 中国民用航空局, 2017.Civil Aviation Administration of China. Air traffic management rules for civil aviation: CCAR-93TM-R5[S]. Beijing: Civil Aviation Administration of China, 2017(in Chinese). [24] NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering & System Safety, 2017, 157: 35-53. [25] 徐野. 复杂互联系统与网络鲁棒性研究[M]. 北京: 电子工业出版社, 2015: 37-40.XU Y. Study of robustness in complex interconnected system and networks[M]. Beijing: Publishing House of Electronics Industry, 2015: 37-40(in Chinese). -