留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空中交通CPS结构特性及韧性评估

王兴隆 魏奕雯 贺敏

王兴隆,魏奕雯,贺敏. 空中交通CPS结构特性及韧性评估[J]. 北京航空航天大学学报,2024,50(4):1187-1196 doi: 10.13700/j.bh.1001-5965.2022.0313
引用本文: 王兴隆,魏奕雯,贺敏. 空中交通CPS结构特性及韧性评估[J]. 北京航空航天大学学报,2024,50(4):1187-1196 doi: 10.13700/j.bh.1001-5965.2022.0313
WANG X L,WEI Y W,HE M. Structural characteristics and resilience evaluation of air traffic CPS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1187-1196 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0313
Citation: WANG X L,WEI Y W,HE M. Structural characteristics and resilience evaluation of air traffic CPS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1187-1196 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0313

空中交通CPS结构特性及韧性评估

doi: 10.13700/j.bh.1001-5965.2022.0313
基金项目: 国家自然科学基金(62173332) ;国家重点研发计划(2020YFB1600101)
详细信息
    通讯作者:

    E-mail:xl-wang@cauc.edu.cn

  • 中图分类号: U8;V355.2

Structural characteristics and resilience evaluation of air traffic CPS

Funds: National Natural Science Foundation of China (62173332); National key Research and Development Program of China (2020YFB1600101)
More Information
  • 摘要:

    针对空中交通体系结构复杂、耦合性强、脆弱性高的特点,为缓解因受扰导致的级联失效现象,对其结构韧性进行研究。建立了空中交通信息物理系统(CPS)模型,提出同层度与层间度、同层介数与层间介数等指标,分析级联失效过程;提出空中交通CPS韧性的概念,并采用定量评估方法对受损能力和恢复能力进行度量;对比不同扰动-恢复策略下的空中交通CPS表现,制定最佳恢复策略,提高受扰时的韧性。以华东地区空中交通CPS为例进行分析,结果表明:空中交通CPS网络度分布服从幂率分布,介数服从指数分布;在基于介数度值扰动下,采用介数恢复策略可以有效提高受扰时空中交通CPS的韧性。

     

  • 图 1  空中交通CPS示意图

    Figure 1.  Schematic diagram of air traffic CPS

    图 2  空中交通CPS级联失效示意图

    Figure 2.  Schematic of cascading failure process of air traffic CPS

    图 3  系统受损及韧性恢复过程曲线

    Figure 3.  Curve of system damage and resilience recovery

    图 4  韧性评估流程

    Figure 4.  Flow chart of resilience assessment

    图 5  华东地区空中交通CPS模型

    Figure 5.  Air traffic CPS model of East China

    图 6  度累积分布

    Figure 6.  Degree cumulative distribution

    图 7  介数累积分布

    Figure 7.  Betweenness cumulative distribution

    图 8  扇区网最大连通子图变化

    Figure 8.  Changes in maximal connected subgraph of sector network

    图 9  航路网最大连通子图变化

    Figure 9.  Changes in maximal connected subgraph of air route network

    图 10  空中交通CPS网络性能损失

    Figure 10.  Performance loss of air traffic CPS

    图 11  空中交通CPS韧性评价值

    Figure 11.  General resilience of air traffic CPS

  • [1] HU S Y, LIU C L, PIURI V. 信息物理系统专题简介[J]. 中国科学:信息科学, 2022, 52(2): 376.

    HU S Y, LIU C L, PIURI V. Introduction to information physical systems[J]. Science in China:Information Science, 2022, 52(2): 376(in Chinese).
    [2] 原豪男, 郭戈. 交通信息物理系统中的车辆协同运行优化调度[J]. 自动化学报, 2019, 45(1): 143-152.

    YUAN H N, GUO G. Vehicle cooperative optimization scheduling in transportation cyber physical systems[J]. Acta Automatica Sinica, 2019, 45(1): 143-152(in Chinese).
    [3] 徐春婕, 陈瑞凤, 贺晓玲, 等. 基于CPS的铁路客运站智能机房监控平台[J]. 计算机工程与设计, 2022, 43(2): 596-601.

    XU C J, CHEN R F, HE X L, et al. Intelligent computer room monitoring platform based on CPS for railway passenger station computer room[J]. Computer Engineering and Design, 2022, 43(2): 596-601(in Chinese).
    [4] LEVSHUN D, KOTENKO I, CHECHULIN A. The application of the methodology for secure cyber-physical systems design to improve the semi-natural model of the railway infrastructure[J]. Microprocessors and Microsystems, 2021, 87: 103482. doi: 10.1016/j.micpro.2020.103482
    [5] CHEN C, LIU X M, QIU T, et al. A short-term traffic prediction model in the vehicular cyber-physical systems[J]. Future Generation Computer Systems, 2020, 105: 894-903.
    [6] CHEN W Q, ZHANG L C. Physical and cyber convergence approach to design future complex aviation cyber physical systems[C]//Proceedings of the 6th IEEE International Conference on Software Engineering and Service Science. Piscataway: IEEE Press, 2015: 541-544.
    [7] WANG X L, HE M. Influential node ranking and invulnerability of air traffic cyber physical system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(2): 288-297.
    [8] JEONG Y S, PARK J H. Adaptive network-based fuzzy inference model on CPS for large scale, intelligent and cooperative surveillance[J]. Computing, 2013, 95(10): 977-992.
    [9] WANG H J, ZHAO H T, ZHANG J, et al. Survey on unmanned aerial vehicle networks: A cyber physical system perspective[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1027-1070.
    [10] ROY S, SRIDHAR B. Cyber-threat assessment for the air traffic management system: A network controls approach[C]//Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 4354.
    [11] 郭九霞. 新一代民航运输系统安全韧性理论与方法研究[D]. 成都: 电子科技大学, 2021: 1-5.

    GUO J X. Research on the theory and method of safety and toughness of new generation civil aviation transportation system[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 1-5(in Chinese).
    [12] 高经东. 基于复杂网络的空域扇区网络分析及抗毁性研究[D]. 天津: 中国民航大学, 2018: 27-32.

    GAO J D. Analysis and invulnerability research of sectors network based on complex network[D]. Tianjin: Civil Aviation University of China, 2018: 27-32(in Chinese).
    [13] WU Y P, CHEN Z L, ZHAO X D, et al. Robust analysis of cascading failures in complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2021, 583: 156320.
    [14] 王兴隆, 贺敏, 刘明学. 空中交通CPS级联失效与缓解策略[J]. 北京航空航天大学学报, 2021, 47(12): 2426-2433.

    WANG X L, HE M, LIU M X. Air traffic CPS cascading failure and mitigation strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2426-2433(in Chinese).
    [15] HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E. A review of definitions and measures of system resilience[J]. Reliability Engineering & System Safety, 2016, 145: 4761.
    [16] 杨琦, 张雅妮, 周雨晴, 等. 复杂网络理论及其在公共交通韧性领域的应用综述[J]. 中国公路学报, 2022, 35(4): 215-229.

    YANG Q, ZHANG Y N, ZHOU Y Q, et al. A review of complex network theory and its application in the resilience of public transportation systems[J]. China Journal of Highway and Transport, 2022, 35(4): 215-229(in Chinese).
    [17] 范瀚文, 常征, 王聪. 海上运输通道关键节点安全韧性影响因素及评价[J]. 上海海事大学学报, 2022, 43(2): 40-46.

    FAN H W, CHANG Z, WANG C. Influencing factors and evaluation of safety resilience of key nodes in maritime transportation channels[J]. Journal of Shanghai Maritime University, 2022, 43(2): 40-46(in Chinese).
    [18] 马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析: 以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62(7): 1228-1235.

    MA S H, WU Y J, CHEN X F. Structural resilience of multimodal transportation networks in urban agglomerations: A case study of the Guanzhong Plain urban agglomeration network[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7): 1228-1235(in Chinese).
    [19] 王兴隆, 石宗北, 陈仔燕. 空中交通网络模体识别及子图结构韧性评估[J]. 航空学报, 2021, 42(7): 324715.

    WANG X L, SHI Z B, CHEN Z Y. Air traffic network motif recognition and sub-graph structure resilience evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324715(in Chinese).
    [20] WANG X L, MIAO S F, TANG J Q. Vulnerability and resilience analysis of the air traffic control sector network in China[J]. Sustainability, 2020, 12(9): 3749. doi: 10.3390/su12093749
    [21] REN L, LIAO H, CASTILLO-EFFEN M, et al. Transformation of mission-critical applications in aviation to cyber-physical systems[M]//SONG H B, RAWAT D B, JESCHKE S, et al. Cyber-physical systems: Foundations, principles, and applications. Amsterdam: Elsevier, 2017: 339-362.
    [22] 徐开俊, 肖成坤, 杨泳, 等. 基于复杂网络理论的中国城市航空网络有向加权分析[J]. 科学技术与工程, 2021, 21(36): 15669-15673. doi: 10.3969/j.issn.1671-1815.2021.36.049

    XU K J, XIAO C K, YANG Y, et al. Directed weighted analysis of Chinese urban aviation network based on complex network theory[J]. Science Technology and Engineering, 2021, 21(36): 15669-15673(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.36.049
    [23] 中国民用航空局. 民用航空空中交通管理规则: CCAR-93TM-R5[S]. 北京: 中国民用航空局, 2017.

    Civil Aviation Administration of China. Air traffic management rules for civil aviation: CCAR-93TM-R5[S]. Beijing: Civil Aviation Administration of China, 2017(in Chinese).
    [24] NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering & System Safety, 2017, 157: 35-53.
    [25] 徐野. 复杂互联系统与网络鲁棒性研究[M]. 北京: 电子工业出版社, 2015: 37-40.

    XU Y. Study of robustness in complex interconnected system and networks[M]. Beijing: Publishing House of Electronics Industry, 2015: 37-40(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-03
  • 录用日期:  2022-07-16
  • 网络出版日期:  2022-07-19
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答