留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多矢量姿态测量算法研究综述

吴美平 刘一麟 郭妍 于瑞航

吴美平,刘一麟,郭妍,等. 多矢量姿态测量算法研究综述[J]. 北京航空航天大学学报,2024,50(5):1427-1437 doi: 10.13700/j.bh.1001-5965.2022.0325
引用本文: 吴美平,刘一麟,郭妍,等. 多矢量姿态测量算法研究综述[J]. 北京航空航天大学学报,2024,50(5):1427-1437 doi: 10.13700/j.bh.1001-5965.2022.0325
WU M P,LIU Y L,GUO Y,et al. A review of algorithms for multi-vector attitude synthesis of research[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1427-1437 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0325
Citation: WU M P,LIU Y L,GUO Y,et al. A review of algorithms for multi-vector attitude synthesis of research[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1427-1437 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0325

多矢量姿态测量算法研究综述

doi: 10.13700/j.bh.1001-5965.2022.0325
基金项目: 国家自然科学基金面上项目(42276199);国家自然科学基金青年科学基金(62103424)
详细信息
    通讯作者:

    E-mail:meipingwu@263.net

  • 中图分类号: V221+.3;TB553

A review of algorithms for multi-vector attitude synthesis of research

Funds: General Project of National Natural Science Foundation of China (42276199); Youth Science Fund of National Natural Science Foundation of China (62103424)
More Information
  • 摘要:

    将矢量测量转化为姿态测量,该问题在姿态估计中被称为Wahba问题。介绍了最小化Wahba问题的损失函数的不同算法,包括最优四元数估计器(ESOQ)、四元数估计器(QUEST)、快速最优姿态矩阵(FOAM)、矩阵的奇异值分解(SVD)等广泛使用的算法,以及基于快速线性四元数姿态估计器(FLAE)、黎曼流形等近年来提出的算法。给出了简单的计算原理与推导过程,并通过计算机仿真对照,归纳各类算法在计算旋转矩阵时的计算精度、鲁棒性。针对姿态测量算法应对当前应用场景的性能需求,简要介绍其在惯性测量单元(IMU)动态对准、协同集群视觉定姿、图像拼接等方面的适用可能和工作原理,并在此基础上简述了姿态测量算法当前的缺陷与未来的发展趋势。

     

  • 图 1  星光成像几何示意图[26]

    Figure 1.  Geometric diagram of starlight imaging[26]

    图 2  卫星姿态确定原理[33]

    Figure 2.  Principle of satellite attitude determination[33]

    图 3  人体加速度计算模型[40]

    Figure 3.  Calculation model of human body acceleration[40]

    图 4  基于共视目标的双机姿态约束[46-47]

    Figure 4.  Dual-aircraft attitude constraints based on common viewing targets[46-47]

    图 5  航天器相对姿态描述涉及的坐标系[48]

    Figure 5.  Coordinates involved in relative attitude description of spacecraft[48]

    表  1  信噪比100 dB时失准角误差

    Table  1.   Misalignment angle error corresponding to signal-to-noise ratio of 100 dB 10−6

    向量 QUEST SVD ESOQ FLAE FOAM Davenport
    1 9.4 9.6 9.85 9.41 9.53 9.39
    2 10.3 10.1 10.15 10.52 NaN 10.24
    3 9.56 9.55 9.91 9.65 9.57 9.38
    4 10.14 10.18 10.23 10.44 NaN 10.20
    5 10.0 10.0 10.0 10.29 NaN 10.43
     注:NaN表示算法解算未收敛到解的可行域。
    下载: 导出CSV

    表  2  信噪比100 dB时损失函数

    Table  2.   Loss function with signal-to-noise ratio of 100 dB 10−6

    向量 QUEST SVD ESOQ FLAE FOAM Davenport
    1 6.78 6.76 7.32 6.76 6.76 6.83
    2 5.49 5.40 5.28 5.41 NaN 5.41
    3 6.69 6.84 6.91 6.82 6.75 6.72
    4 5.44 5.33 5.48 5.38 NaN 5.45
    5 5.41 5.38 5.42 5.38 NaN 5.43
     注:NaN表示算法解算未收敛到解的可行域。
    下载: 导出CSV

    表  3  信噪比20 dB时失准角误差

    Table  3.   Misalignment angle error corresponding to Signal-to-Noise Ratio of 20 dB

    向量 QUEST SVD ESOQ FLAE FOAM Davenport
    1 0.154 0.09 0.349 0.147 0.152 0.09
    2 0.103 0.101 0.102 0.104 NaN 0.102
    3 0.154 0.09 0.349 0.136 0.151 0.09
    4 0.102 0.103 0.103 0.102 NaN 0.101
    5 0.101 0.102 0.102 0.103 NaN 0.104
     注:NaN表示算法解算未收敛到解的可行域。
    下载: 导出CSV

    表  4  信噪比20 dB时损失函数

    Table  4.   Loss function with signal-to-noise ratio of 20 dB

    向量 QUEST SVD ESOQ FLAE FOAM Davenport
    1 0.0874 0.0680 0.1836 0.0927 0.0899 0.0675
    2 0.0542 0.0541 0.0532 0.0539 NaN 0.530
    3 0.0887 0.0670 0.1841 0.088 0.0939 0.0675
    4 0.0543 0.0535 0.0539 0.0542 NaN 0.0544
    5 0.0544 0.0530 0.0539 0.0542 NaN 0.0530
     注:NaN表示算法解算未收敛到解的可行域。
    下载: 导出CSV
  • [1] WAHBA G. A least squares estimate of satellite attitude[J]. SIAM Review, 1965, 7(3): 409.
    [2] HUANG W, XIE H S, SHEN C, et al. A robust strong tracking cubature Kalman filter for spacecraft attitude estimation with quaternion constraint[J]. Acta Astronautica, 2016, 121: 153-163. doi: 10.1016/j.actaastro.2016.01.009
    [3] BLACK H D. A passive system for determining the attitude of a satellite[J]. AIAA Journal, 1964, 2(7): 1350-1351. doi: 10.2514/3.2555
    [4] MARKLEY F L, MORTARI D. Quaternion attitude estimation using vector observations[J]. Journal of the Astronautical Sciences, 2000, 48(2): 359-380.
    [5] MARKLEY F L. Attitude determination using vector observations and the singular value decomposition[C]//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. Reston: AIAA, 1987.
    [6] DAVENPORT P B. A vector approach to the algebra of rotations with applications: NASA TN D-4696[R]. Washington, D.C.: NASA, 1968.
    [7] SHUSTER M D, OH S D. Three-axis attitude determination from vector observations[J]. Journal of Guidance and Control, 1981, 4(1): 70-77. doi: 10.2514/3.19717
    [8] MARKLEY F L. Attitude determination using vector observations: A fast optimal matrix algorithm[J]. Journal of the Astronautical Sciences, 1993, 41(2): 261-280.
    [9] MORTARI D. ESOQ: A closed-form solution to the Wahba problem[J]. Journal of the Astronautical Sciences, 1997, 45(2): 195-204. doi: 10.1007/BF03546376
    [10] MORTARI D. ESOQ2 Single-point algorithm for fast optimal attitude determination[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting. Reston: AIAA, 1997.
    [11] YANG Y G, ZHOU Z Q. An analytic solution to Wahbaʼs problem[J]. Aerospace Science and Technology, 2013, 30(1): 46-49. doi: 10.1016/j.ast.2013.07.002
    [12] YANG Y. Attitude determination using Newton’s method on Riemannian manifold[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(14): 2737-2742.
    [13] WU J, ZHOU Z B, GAO B, et al. Fast linear quaternion attitude estimator using vector observations[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(1): 307-319. doi: 10.1109/TASE.2017.2699221
    [14] YAN G M, CHEN R T, WENG J. A super-fast optimal attitude matrix in attitude determination[J]. Measurement Science and Technology, 2021, 32(9): 095012. doi: 10.1088/1361-6501/ac02f5
    [15] GHADIRI H, ESMAELZADEH R, ZARDASHTI R. Robust optimal attitude determination using interval analysis[J]. Advances in Space Research, 2022, 69(6): 2611-2617. doi: 10.1016/j.asr.2021.12.045
    [16] 严恭敏, 陈若彤, 郭鹍. 多矢量定姿的SVD和QUEST算法等价性分析[J]. 中国惯性技术学报, 2019, 27(5): 568-572.

    YAN G M, CHEN R T, GUO K. Equivalence analysis between SVD and QUEST for multi-vector attitude determination[J]. Journal of Chinese Inertial Technology, 2019, 27(5): 568-572(in Chinese).
    [17] SHMAKOV S L. A universal method of solving quartic equations[J]. International Journal of Pure and Applied Mathematics, 2011, 71(2): 251-259.
    [18] YANG Y. Globally convergent optimization algorithms on Riemannian manifolds: Uniform framework for unconstrained and constrained optimization[J]. Journal of Optimization Theory and Applications, 2007, 132(2): 245-265. doi: 10.1007/s10957-006-9081-0
    [19] SMITH S T. Optimization techniques on Riemannian manifolds[J]. Fields Institute Communications, 1994, 3: 113-136.
    [20] BEN-ISRAEL A, GREVILLE T N E. Generalized inverses: Theory and applications[J]. Journal of the Royal Statistical Society, Series A, 1976, 139(1): 131-132.
    [21] 严恭敏, 秦永元, 卫育新, 等. 一种适用于SINS动基座初始对准的新算法[J]. 系统工程与电子技术, 2009, 31(3): 634-637.

    YAN G M, QIN Y Y, WEI Y X, et al. New initial alignment algorithm for SINS on moving base[J]. Systems Engineering and Electronics, 2009, 31(3): 634-637(in Chinese).
    [22] 翁浚, 秦永元, 严恭敏, 等. 车载动基座FOAM对准算法[J]. 系统工程与电子技术, 2013, 35(7): 1498-1501.

    WENG J, QIN Y Y, YAN G M. Vehicular moving-base FOAM alignment algorithm[J]. Systems Engineering and Electronics, 2013, 35(7): 1498-1501(in Chinese).
    [23] 刘文倩, 程向红, 曹鹏, 等. 基于多矢量定姿的动基座最优化对准算法[J]. 飞控与探测, 2021, 4(5): 27-33.

    LIU W Q, CHENG X H , CAO P, et al. Optimal alignment algorithm for moving base based on multi vector attitude determination[J]. Flight Control & Detection, 2021, 4(5): 27-33(in Chinese).
    [24] 韩勇强, 王新健, 谢玲, 等. 一种车载捷联惯导行进间QUEST优化粗对准算法[J]. 中国惯性技术学报, 2020, 28(1): 41-46.

    HAN Y Q, WANG X J, XIE L, et al. An in-motion QUEST optimized coarse alignment algorithm for vehicle carried SINS[J]. Journal of Chinese Inertial Technology, 2020, 28(1): 41-46(in Chinese).
    [25] 周月, 曾建辉, 刘猛, 等. 惯性系姿态确定的SINS晃动基座初始对准算法[J]. 导航定位与授时, 2020, 7(2): 83-89.

    ZHOU Y, ZENG J H, LIU M, et al. Alignment algorithm based on attitude determination in inertial frame for SINS with swaying base[J]. Navigation Positioning & Timing, 2020, 7(2): 83-89(in Chinese).
    [26] 洪然. 基于旋量的星敏感器姿态确定方法研究[D]. 南京: 南京航空航天大学, 2020.

    HONG R. Attitude determination of star sensor based on spinor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [27] 陈希军, 张泽, 史话. 基于恒星敏感器的姿态确定算法研究[J]. 控制工程, 2008, 15(3): 253-256.

    CHEN X J, ZHANG Z, SHI H. Attitude determination algorithm based on star sensor[J]. Control Engineering of China, 2008, 15(3): 253-256(in Chinese).
    [28] NARKIEWICZ J, SOCHACKI M, RODACKI A, et al. Comparison of algorithms for satellite attitude determination using data from visual sensors[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2021, 69(4): 137935.
    [29] 张磊, 何昕, 魏仲慧, 等. 星图分布对星敏感器最小二乘姿态精度的影响[J]. 红外与激光工程, 2014, 43(6): 1836-1841.

    ZHANG L, HE X, WEI Z H, et al. Impact analysis of star distribution on least square attitude measuring precision in star sensor[J]. Infrared and Laser Engineering, 2014, 43(6): 1836-1841(in Chinese).
    [30] 宋亮亮, 张涛, 梁斌, 等. 基于星敏感器的卫星姿态确定方法研究[J]. 系统仿真学报, 2010, 22(增刊1): 1-6.

    SONG L L, ZHANG T, LIANG B, et al. Research on satellite attitude determination method based on star sensor[J]. Journal of System Simulation, 2010, 22(Sup 1): 1-6(in Chinese).
    [31] 肖支才, 李海君, 王朕. 基于最优REQUEST/CKF组合的航天器姿态确定[J]. 弹箭与制导学报, 2015, 6: 1-4,8.

    XIAO Z C, LI H J, WANG Z. Spacecraft attitude determination of REQUEST/CKF Integration[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 6: 1-4,8(in Chinese).
    [32] SHUSTER M D. Filter quest or request[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 643-645. doi: 10.2514/1.40423
    [33] 周竹青, 李星秀, 吴盘龙. 一种星敏感器/陀螺组合卫星姿态确定算法[J]. 兵器装备工程学报, 2021, 42(10): 187-191. doi: 10.11809/bqzbgcxb2021.10.030

    ZHOU Z Q, LI X X, WU P L. Attitude determination method of satellite based on star and gyroscope[J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 187-191(in Chinese). doi: 10.11809/bqzbgcxb2021.10.030
    [34] 张刘, 张家坤, 吕雪莹, 等. 基于粒子群寻优的高精度星敏感器在轨标定方法[J]. 飞控与探测, 2020, 3(3): 1-7.

    ZHANG L, ZHANG J K, LYU X Y, et al. A hight precision on or bit calibration method for star sensor based on particle swarm optimization[J]. Flight Control & Detection, 2020, 3(3): 1-7(in Chinese).
    [35] 白子扬. 基于星敏感器的航天器姿态确定算法[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    BAI Z Y. Attitude determination algorithm of spacecraft based on star sensor[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [36] YANG H, CARLONE L. A quaternion-based certifiably optimal solution to the Wahba problem with outliers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 1665-1674.
    [37] YANG H, SHI J N, CARLONE L. TEASER: Fast and certifiable point cloud registration[J]. IEEE Transactions on Robotics, 2021, 37(2): 314-333. doi: 10.1109/TRO.2020.3033695
    [38] DUAN Y B, ZHANG X Y, LI Z B. A new quaternion-based Kalman filter for human body motion tracking using the second estimator of the optimal quaternion algorithm and the joint angle constraint method with inertial and magnetic sensors[J]. Sensors, 2020, 20(21): 6018. doi: 10.3390/s20216018
    [39] YUN X P, BACHMANN E R. Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking[J]. IEEE Transactions on Robotics, 2006, 22(6): 1216-1227. doi: 10.1109/TRO.2006.886270
    [40] ZHANG X Y, XIAO W. A fuzzy tuned and second estimator of the optimal quaternion complementary filter for human motion measurement with inertial and magnetic sensors[J]. Sensors, 2018, 18(10): 3517. doi: 10.3390/s18103517
    [41] 马正华, 朱鸣庆, 戎海龙. 地磁组合重力矢量权值的优化算法[J]. 计算机仿真, 2020, 37(4): 298-303.

    MA Z H, ZHU M Q, RONG H L. Optimization algorithm of the weight assigned to gravity acceleration vector used to MAG-μIMU[J]. Computer Simulation, 2020, 37(4): 298-303(in Chinese).
    [42] 谢启龙, 宋龙, 鲁浩, 等. 协同导航技术研究综述[J]. 航空兵器, 2019, 26(4): 23-30.

    XIE Q L, SONG L, LU H, et al. Review of collaborative navigation technology[J]. Aero Weaponry, 2019, 26(4): 23-30(in Chinese).
    [43] 高伟, 刘亚龙, 徐博. 基于双领航者的多AUV协同导航系统可观测性分析[J]. 系统工程与电子技术, 2013, 35(11): 2370-2375.

    GAO W, LIU Y L, XU B. Observability analysis of cooperative navigation system for multiple AUV based on two-leaders[J]. Systems Engineering and Electronics, 2013, 35(11): 2370-2375(in Chinese).
    [44] 刘晓洋, 李瑞涛, 徐胜红. 基于测距/测速信息的无人机协同导航算法研究[J]. 战术导弹技术, 2019(2): 73-77.

    LIU X Y, LI R T, XU S H. Research on cooperative navigation algorithm of UAV based on ranging/speed measurement information[J]. Tactical Missile Technology, 2019(2): 73-77(in Chinese).
    [45] 张旭, 崔乃刚, 王小刚, 等. 考虑几何约束的无人机双机编队相对姿态确定方法[J]. 战术导弹技术, 2017(1): 17-21.

    ZHANG X, CUI N G, WANG X G, et al. Relative attitude determination method for dual-UAVs formation with geometric constraint[J]. Tactical Missile Technology, 2017(1): 17-21(in Chinese).
    [46] 张旭, 崔乃刚, 王小刚. 基于相对视线矢量测量的多航天器编队相对姿态求解方法[J]. 北京理工大学报, 2017, 31(11): 1178-1182.

    ZHANG X, CUI N G, WANG X G. Relative attitude solution for multi-spacecraft formation based on relative line-of-sight vector measurement[J]. Transactions of Beijing Institute of Technology, 2017, 31(11): 1178-1182(in Chinese).
    [47] 张旭. 基于鲁棒自适应滤波的无人机编队相对导航方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHANG X. Research on relative navigation method of UAV formation based on robust adaptive filtering[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [48] 王大轶, 鄂薇, 邹元杰, 等. 利用非合作航天器双特征结构的相对姿态确定方法[J]. 飞控与探测, 2020, 3(1): 18-26.

    WANG D Y, E W, ZOU Y J, et al. Relative attitude determination method of non-cooperative spacecraft using dual feature structure[J]. Flight Control & Detection, 2020, 3(1): 18-26(in Chinese).
    [49] JACKSON B E, TRACY K, MANCHESTER Z. Planning with attitude[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5658-5664. doi: 10.1109/LRA.2021.3052431
    [50] HOWELL T A, JACKSON B E, MANCHESTER Z. ALTRO: A fast solver for constrained trajectory optimization[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2019: 7674-7679.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  116
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-09-23
  • 网络出版日期:  2022-11-21
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答