留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波动控制的直升机吊挂鲁棒减摆技术

李红宏 韩艳铧

李红宏,韩艳铧. 基于波动控制的直升机吊挂鲁棒减摆技术[J]. 北京航空航天大学学报,2024,50(5):1629-1638 doi: 10.13700/j.bh.1001-5965.2022.0326
引用本文: 李红宏,韩艳铧. 基于波动控制的直升机吊挂鲁棒减摆技术[J]. 北京航空航天大学学报,2024,50(5):1629-1638 doi: 10.13700/j.bh.1001-5965.2022.0326
LI H H,HAN Y H. Robust anti-swing technology for helicopter slung load based on wave control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1629-1638 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0326
Citation: LI H H,HAN Y H. Robust anti-swing technology for helicopter slung load based on wave control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1629-1638 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0326

基于波动控制的直升机吊挂鲁棒减摆技术

doi: 10.13700/j.bh.1001-5965.2022.0326
详细信息
    通讯作者:

    E-mail:hanyanhua@nuaa.edu.cn

  • 中图分类号: V249.1

Robust anti-swing technology for helicopter slung load based on wave control

More Information
  • 摘要:

    直升机在运输重型货物从平飞到悬停的机动过程中,会产生许多稳定性问题,减小吊挂摆角幅度具有重要意义。基于波动控制的方法为直升机吊挂系统设计一种减摆控制器;采用拉格朗日分析力学法,建立直升机吊挂耦合系统四自由度非线性纵向运动模型,采用小扰动的方法在平衡点处对所建模型进行线性化;在此基础上,基于特征值配置法设计状态反馈控制器;设计波动控制器来减小摆角控制具有良好的动态性能和稳态性能。在仿真中对吊挂载荷质量进行拉偏,证明所设计波动控制器具有较强的鲁棒性,结果表明:所设计波动控制器有效。

     

  • 图 1  本文模型示意图

    Figure 1.  Schematic diagram of the developed model

    图 2  本文模型简化示意图

    Figure 2.  Simplified schematic diagram of the developed model

    图 3  控制系统结构图

    Figure 3.  Structure diagram of control system

    图 4  状态反馈特征值配置控制结构图

    Figure 4.  Structure diagram of state-feedback eigenvalue configuration control

    图 5  波动控制结构图

    Figure 5.  Structure diagram of wave-based control

    图 6  本文波动控制结构图

    Figure 6.  Structure diagram of the designed wave-based control

    图 7  增广系统信号流程图

    Figure 7.  Signal flow chart of augmented matrix

    图 8  增广系统特征值

    Figure 8.  Characteristic values of augmented matrix

    图 9  状态量随时间变化曲线

    Figure 9.  Curves of state changes over time

    图 10  引入s项前后,状态量随时间变化曲线

    Figure 10.  Curves of state changes over time before and after introducing term s

    图 11  质量偏差为+30 kg时,状态量随时间变化曲线

    Figure 11.  Curves of state changes over time with mass bias of +30 kg

    图 12  质量偏差为−50 kg时,状态量随时间变化曲线

    Figure 12.  Curves of state changes over time with mass bias of −50 kg

    图 13  不同质量偏差下,状态量随时间变化曲线

    Figure 13.  Curves of state changes over time with different mass biases

    图 14  气动阻力下,状态量随时间变化曲线

    Figure 14.  Curves of state changes over time in aerodynamic resistance

    图 15  加入气动阻力前后,状态量随时间变化曲线

    Figure 15.  Curves of state changes over time before and after introduction of aerodynamic resistance

    表  1  仿真入口参数

    Table  1.   Simulation entry parameters

    m1/kgm2/kgl/mg/(m·s−2)a/mb/mJ/(kg·m2)$ x $/m$ y $/mvx/(m·s−1)vy/(m·s−1)$ \phi $/(°)$ \eta $/(°)
    400200109.820.52100550105
    下载: 导出CSV

    表  2  特征值参数

    Table  2.   Eigenvalue parameters

    s1s2s3s4s5s6s7s8
    −0.4+0.798i−0.4+0.798i−0.5+0.455i−0.5−0.455i−0.6+0.3i−0.6−0.3i−1.2−1.2
    下载: 导出CSV

    表  3  各状态量最大幅值

    Table  3.   Maximum amplitude of each state variable

    控制方法 x/m y/m $\eta $/(°) $\phi $/(°)
    状态反馈特征值
    配置控制
    50.02 12.23 9.84 12.65
    波动控制 50.35 10.57 2.32 4.28
    下载: 导出CSV

    表  4  各状态量调节时间

    Table  4.   Adjustment time for each state variable s

    状态量 状态反馈特征值
    配置控制
    波动控制
    x 8.98 17.26
    y 18.40 23.26
    $\eta $ 21.12 24.69
    $\phi $ 16.22 19.36
    下载: 导出CSV

    表  5  引入s项前后各状态量调节时间表

    Table  5.   Adjustment time table for each state variable before and after introducing term s

    状态量 调节时间/s 减小幅度/%
    引入s项前 引入s项后
    $x$ 26.82 17.26 35.65
    $y$ 36.16 23.26 35.67
    $\eta $ 25.36 24.69 2.64
    $\phi $ 18.10 19.36 −6.96
    下载: 导出CSV
  • [1] BERGERON K, GRUBB A L, WILKS A L, et al. Quasi-static and prescribed motion simulations for helicopter sling loads[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: AIAA2018-0779.
    [2] GURSOY G, TARIMCI O, YAVRUCUK I. Helicopter slung load simulations using heli-dyn+[C]//Proceedings of the AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2012: AIAA2012-4851.
    [3] 万绍峰, 曹义华, 黄磊. 基于Kane方法的直升机-柔性绳索-吊挂系统动力学建模[J]. 航空动力学报, 2016, 31(4): 934-940.

    WAN S F, CAO Y H, HUANG L. Dynamic modeling of helicopter-flexible rope-slung load system based on Kane s method[J]. Journal of Aerospace Power, 2016, 31(4): 934-940(in Chinese).
    [4] SANSAL K, CALISKAN A, KARGIN V. Investigation of the effects of slung load coupled dynamics on helicopter controllability and handling quality[C]//Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021: AIAA2021-0594.
    [5] 曹龙, 曹义华, 李春华. 直升机-吊挂耦合系统平衡特性和稳定性分析[J]. 北京航空航天大学学报, 2014, 40(9): 1219-1224.

    CAO L, CAO Y H, LI C H. Equilibrium characteristics and stability analysis of helicopter-slung-load coupling system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1219-1224(in Chinese).
    [6] 王照瑞, 曹义华. 吊挂物为刚体模型的直升机外吊挂飞行平衡与稳定性分析[J]. 南京航空航天大学学报, 2015, 47(2): 296-303.

    WANG Z R, CAO Y H. Equilibrium characteristics and stability analysis of helicopter with rigid-body modeling slung-load[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 296-303(in Chinese).
    [7] 朱笑宇, 曹义华, 曹龙. 重型直升机-吊挂耦合系统闭环飞行品质分析[J]. 北京航空航天大学学报, 2016, 42(7): 1550-1556.

    ZHU X Y, CAO Y H, CAO L. Heavy helicopter-slung-load coupling system flying qualities in closed-loop state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1550-1556(in Chinese).
    [8] 何荣荣, 陈谋, 吴庆宪, 等. 无人直升机吊挂系统滑模反步减摆控制[J]. 航空兵器, 2020, 27(5): 100-106. doi: 10.12132/ISSN.1673-5048.2019.0117

    HE R R, CHEN M, WU Q X, et al. Sliding mode backstepping anti-swing control of unmanned helicopter slung-load system[J]. Aero Weaponry, 2020, 27(5): 100-106(in Chinese). doi: 10.12132/ISSN.1673-5048.2019.0117
    [9] 张松, 马钊, 张辉. 直升机吊挂飞行中载荷摆动控制方法研究[J]. 航空工程进展, 2022(2): 57-63.

    ZHANG S, MA Z, ZHANG H. Research on slung-load swing control method in helicopter suspension flight[J]. Advances in Aeronautical Science and Engineering, 2022(2): 57-63(in Chinese).
    [10] POTTER J, SINGHOSE W, COSTELLOY M. Reducing swing of model helicopter sling load using input shaping[C]//Proceedings of the 2011 9th IEEE International Conference on Control and Automation. Piscataway: IEEE Press, 2011: 348-353.
    [11] OMAR H M. Designing anti-swing fuzzy controller for helicopter slung-load system near hover by particle swarms[J]. Aerospace Science and Technology, 2013, 29(1): 223-234. doi: 10.1016/j.ast.2013.03.006
    [12] EL-FERIK S, SYED A H, OMAR H M, et al. Nonlinear forward path tracking controller for helicopter with slung load[J]. Aerospace Science and Technology, 2017, 69: 602-608. doi: 10.1016/j.ast.2017.07.028
    [13] REN Y, LI K, YE H. Modeling and anti-swing control for a helicopter slung-load system[J]. Applied Mathematics and Computation, 2020, 372: 124990. doi: 10.1016/j.amc.2019.124990
    [14] ENCIU K, ROSEN A. Nonlinear dynamical characteristics of fin-stabilized underslung loads[J]. AIAA Journal, 2015, 53(3): 723-738. doi: 10.2514/1.J053241
    [15] O’CONNOR W, LANG D. Position control of flexible robot arms using mechanical waves[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(3): 334-339. doi: 10.1115/1.2805406
    [16] O’CONNOR W J. A gantry crane problem solved[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125(4): 569-576. doi: 10.1115/1.1636198
    [17] O’CONNOR W J. Wave-based analysis and control of lump-modeled flexible robots[J]. IEEE Transactions on Robotics, 2007, 23(2): 342-352. doi: 10.1109/TRO.2007.895061
    [18] HABIBI H, O’CONNOR W. Wave-based motion and slewing control of a double-appendage, flexible system with ungrounded actuator through development of direct actuator force control[J]. Mechanical Systems and Signal Processing, 2020, 137: 106175. doi: 10.1016/j.ymssp.2019.05.059
    [19] O’CONNOR W J, RAMOS DE LA FLOR F, MCKEOWN D J, et al. Wave-based control of non-linear flexible mechanical systems[J]. Nonlinear Dynamics, 2009, 57(1): 113-123.
    [20] O’CONNOR W J, FUMAGALLI A. Refined wave-based control applied to nonlinear, bending, and slewing flexible systems[J]. Journal of Applied Mechanics, 2009, 76(4): 041005. doi: 10.1115/1.3086434
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  14
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-05-29
  • 网络出版日期:  2022-10-09
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答