留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间长方形绳网展开动力学及多参数特性分析

李梦生 岳帅 杜忠华 张庆展 刘洲 刘志

李梦生,岳帅,杜忠华,等. 空间长方形绳网展开动力学及多参数特性分析[J]. 北京航空航天大学学报,2024,50(3):994-1004 doi: 10.13700/j.bh.1001-5965.2022.0342
引用本文: 李梦生,岳帅,杜忠华,等. 空间长方形绳网展开动力学及多参数特性分析[J]. 北京航空航天大学学报,2024,50(3):994-1004 doi: 10.13700/j.bh.1001-5965.2022.0342
LI M S,YUE S,DU Z H,et al. Deployment dynamics and multi-parameter performances analysis of spatial rectangular tether-net[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):994-1004 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0342
Citation: LI M S,YUE S,DU Z H,et al. Deployment dynamics and multi-parameter performances analysis of spatial rectangular tether-net[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):994-1004 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0342

空间长方形绳网展开动力学及多参数特性分析

doi: 10.13700/j.bh.1001-5965.2022.0342
基金项目: 国家自然科学基金(52102436);中央高校基本科研业务费专项资金(30920021109);中国博士后科学基金(2020M681615);江苏省自然科学基金(BK20200496)
详细信息
    通讯作者:

    E-mail:yueshuai@njust.edu.cn

  • 中图分类号: V476.5

Deployment dynamics and multi-parameter performances analysis of spatial rectangular tether-net

Funds: National Natural Science Foundation of China (52102436); The Fundamental Research Funds for the Central Universities (30920021109); China Postdoctoral Science Foundation (2020M681615); Natural Science Foundation of Jiangsu Province (BK20200496)
More Information
  • 摘要:

    空间绳网系统是一种针对空间碎片的柔性捕获系统,针对带有太阳翼的空间目标,提出一种用于捕获目标主体的长方形绳网。为分析其展开效果,建立有限元模型,通过对比地面试验结果来验证有限元模型的可靠性。建立长方形绳网的评价指标,并通过各项评价指标对比不同牵拉模式、牵引绳分布圆直径及牵引体发射角度下的绳网展开特性。结果表明:仿真结果与试验结果吻合,有限元模型可靠;在八点牵拉、十点牵拉和十二点牵拉3种模式下,十点牵拉所能达到的展开效果最好;牵引绳分布圆直径增大,所能达到的最大展开面积和保形距离减小,展开距离增大;牵引体的发射角度增大,长方形绳网的最大展开面积和保形距离增大,展开距离减小。

     

  • 图 1  长方形绳网捕获过程

    Figure 1.  Capture process of rectangular tether-net

    图 2  长方形绳网系统结构组成

    Figure 2.  Structural components of rectangular tether-net system

    图 3  长方形绳网构型

    Figure 3.  Configuration of rectangular tether-net

    图 4  桁架单元受力情况

    Figure 4.  Stress of truss unit

    图 5  绳网抽出阻力试验示意图

    Figure 5.  Schematic diagram of tether-net withdrawal resistance experiment

    图 6  传感器所受压力变化曲线

    Figure 6.  Pressure curves of sensor

    图 7  绳网抽出阻力变化曲线

    Figure 7.  Curve of drawdown resistance of tether-net

    图 8  地面验证试验布置

    Figure 8.  On-ground experimental setup

    图 9  仿真与试验绳网位形对比

    Figure 9.  Comparison of tether-net configuration between simulation and experiment

    图 10  仿真与试验发射距离对比

    Figure 10.  Comparison of launching distance between simulation and experiment

    图 11  初始条件下绳网展开性能

    Figure 11.  Deployable performance of tether-net under initial conditions

    图 12  绳网牵拉模式示意图

    Figure 12.  Schematic diagram of tether-net towing mode

    图 13  不同牵拉模式下绳网展开性能

    Figure 13.  Deployment performance of tether-net under different towing modes

    图 14  不同牵引绳分布圆直径下绳网展开性能

    Figure 14.  Deployment performance of tether-net under different diameter of towing tether distribution circle

    图 15  不同发射角度下绳网展开性能

    Figure 15.  Deployment performance of tether-net under different launch angle

    表  1  动力学模型初始参数

    Table  1.   Initial parameters of dynamics model

    参数 数值
    绳网边长/m 16×8
    网目大小/(m×m) 0.8×0.8
    主网绳直径/mm 0.5
    边绳直径/mm 2
    牵引绳直径/mm 2
    牵引体质量/kg 0.17
    发射速度/(m·s−1) 30
    发射角度/(°) 16
    牵引绳分布圆直径/m 21.2
    下载: 导出CSV
  • [1] European Space Agency. Space debris[EB/OL]. (2022-04-04)[2022-05-04]. https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers.
    [2] KESSLER D J, COUR-PALAIS B G. Collision frequency of artificial satellites: The creation of a debris belt[J]. Journal of Geophysical Research, 1978, 83(A6): 2637-2646. doi: 10.1029/JA083iA06p02637
    [3] MARK C P, KAMATH S. Review of active space debris removal methods[J]. Space Policy, 2019, 47: 194-206. doi: 10.1016/j.spacepol.2018.12.005
    [4] ELLERY A. Tutorial review on space manipulators for space debris mitigation[J]. Robotics, 2019, 8(2): 34. doi: 10.3390/robotics8020034
    [5] BISCHOF B. ROGER-Robotic geostationary orbit restorer[C]//Proceedings of the 54th International Astronautical Congress. Paris: International Astronautical Federation, 2012, 3: 2518.
    [6] WAYMAN A, RATCLIFFE A, BARRACLOUGH S, et al. Design and testing of a full scale harpoon capture system[C]//Proceedings of the 7th European Conference on Space Debris. Darmstadt: ESA Space Debris Office, 2017, 7: 411-422.
    [7] 孙永军, 王钤, 刘伊威, 等. 空间非合作目标捕获方法综述[J]. 国防科技大学学报, 2020, 42(3): 74-90.

    SUN Y J, WANG Q, LIU Y W, et al. A review of spatial non-cooperative target acquisition methods[J]. Journal of National University of Defense Technology, 2020, 42(3): 74-90(in Chinese).
    [8] HOU Y S, LIU C, HU H Y, et al. Dynamic computation of a tether-net system capturing a space target via discrete elastic rods and an energy-conserving integrator[J]. Acta Astronautica, 2021, 186: 118-134. doi: 10.1016/j.actaastro.2021.05.029
    [9] MANKALA K K, AGRAWAL S K. Dynamic modeling and simulation of impact in tether net/gripper systems[J]. Multibody System Dynamics, 2004, 11(3): 235-250. doi: 10.1023/B:MUBO.0000029393.25494.64
    [10] GOLEBIOWSKI W, MICHALCZYK R, DYREK M, et al. Validated simulator for space debris removal with nets and other flexible tethers applications[J]. Acta Astronautica, 2016, 129: 229-240. doi: 10.1016/j.actaastro.2016.08.037
    [11] GAO Q Y, ZHANG Q B, PENG W Y, et al. Dynamics modelling and ground test of space nets[C]//Proceedings of the International Conference on Mechanical & Aerospace Engineering. Piscataway: IEEE Press, 2016: 587-591.
    [12] SHAN M H, GUO J, GILL E. Deployment dynamics of tethered-net for space debris removal[J]. Acta Astronautica, 2017, 132: 293-302. doi: 10.1016/j.actaastro.2017.01.001
    [13] SI J Y, PANG Z J, DU Z H, et al. Dynamics modeling and simulation of self-collision of tether-net for space debris removal[J]. Advances in Space Research, 2019, 64(9): 1675-1687. doi: 10.1016/j.asr.2019.08.006
    [14] 李京阳, 于洋, 宝音贺西, 等. 空间飞网两种动力学模型的比较研究[J]. 力学学报, 2011, 43(3): 542-550.

    LI J Y, YU Y, BAOYIN H X, et al. Comparative study on two dynamic models of space flying net[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 542-550(in Chinese).
    [15] BOTTA E M, SHARF I, MISRA A K, et al. On the simulation of tether nets for space debris capture with vortex dynamics[J]. Acta Astronautica, 2016, 123: 91-102. doi: 10.1016/j.actaastro.2016.02.012
    [16] 刘海涛, 张青斌, 杨乐平, 等. 空间绳网系统展开动力学特性分析[J]. 国防科技大学学报, 2015, 37(3): 68-77.

    LIU H T, ZHANG Q B, YANG L P, et al. Analysis of deployment dynamics of space tether-net system[J]. Journal of National University of Defense Technology, 2015, 37(3): 68-77(in Chinese).
    [17] SHARF I, THOMSEN B, BOTTA E M, et al. Experiments and simulation of a net closing mechanism for tether-net capture of space debris[J]. Acta Astronautica, 2017, 139: 332-343. doi: 10.1016/j.actaastro.2017.07.026
    [18] 于洋. 空间绳索系统的动力学建模方法[C]//北京力学会第十六届学术年会. 北京: 北京力学会, 2010: 171-173.

    YU Y. Dynamic modeling method for space tethered systems[C]// Proceedings of the 16th Annual conference of Beijing Dynamic Society. Beijing: Beijing Dynamic Society, 2010: 171-173(in Chinese).
    [19] 刘海涛. 空间绳网展开及复合体离轨动力学与控制[D]. 长沙: 国防科学技术大学, 2014: 11-12.

    LIU H T. Dynamics and control of space tether-net deploys and complex deorbit[D]. Changsha: National University of Defense Technology, 2014: 11-12(in Chinese).
    [20] 庄茁, 由小川, 廖剑晖, 等. 基于Abaqus的有限元分析和应用[M]. 北京: 清华大学出版社, 2009: 192-193.

    ZHUANG Z, YOU X C, LIAO J H, et al. Finite element analysis and application based on Abaqus[M]. Beijing: Tsinghua University Press, 2009: 192-193(in Chinese).
    [21] YUE S, TITURUS B, NIE H, et al. Liquid spring damper for vertical landing reusable launch vehicle under impact conditions[J]. Mechanical Systems and Signal Processing, 2019, 121: 579-599. doi: 10.1016/j.ymssp.2018.11.034
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  86
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 录用日期:  2022-08-21
  • 网络出版日期:  2022-08-29
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答