留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含人工缺陷的2195-T8铝锂合金在30% HNO3中的腐蚀行为

郭一 刘德俊 常新龙 田干 岳春国 庞闯

郭一,刘德俊,常新龙,等. 含人工缺陷的2195-T8铝锂合金在30% HNO3中的腐蚀行为[J]. 北京航空航天大学学报,2024,50(3):896-903 doi: 10.13700/j.bh.1001-5965.2022.0344
引用本文: 郭一,刘德俊,常新龙,等. 含人工缺陷的2195-T8铝锂合金在30% HNO3中的腐蚀行为[J]. 北京航空航天大学学报,2024,50(3):896-903 doi: 10.13700/j.bh.1001-5965.2022.0344
GUO Y,LIU D J,CHANG X L,et al. Corrosion behavior of 2195-T8 aluminum-lithium alloy with artificial defects in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):896-903 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0344
Citation: GUO Y,LIU D J,CHANG X L,et al. Corrosion behavior of 2195-T8 aluminum-lithium alloy with artificial defects in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):896-903 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0344

含人工缺陷的2195-T8铝锂合金在30% HNO3中的腐蚀行为

doi: 10.13700/j.bh.1001-5965.2022.0344
基金项目: 国家自然科学基金(52075541,52272446);陕西省自然科学基金(2022JM-243)
详细信息
    通讯作者:

    E-mail:tiangan_2012@163.com

  • 中图分类号: V19

Corrosion behavior of 2195-T8 aluminum-lithium alloy with artificial defects in 30% HNO3

Funds: National Natural Science Foundation of China (52075541,52272446); Natural Science Foundation of Shaanxi Province (2022JM-243)
More Information
  • 摘要:

    为研究2195-T8铝锂合金在酸性介质中的腐蚀性能,通过扫描电子显微镜(SEM)、扫描透射电子显微镜(STEM)等微观表征手段,分析2195-T8铝锂合金在30% HNO3中的腐蚀形貌。提出一种块分割和边缘检测相结合的图像处理方法,从统计的角度对2195-T8铝锂合金在30% HNO3中的腐蚀规律进行分析。结果表明:合金在浸泡不同时长后出现了典型的点蚀和晶间腐蚀形貌;人工缺陷深度会加剧腐蚀的程度;在腐蚀的初期阶段,蚀坑的数量快速增长,蚀坑面积主要集中在0~20 μm2。而在腐蚀的中后期,蚀坑的数量及面积变化不大,只有少量的蚀坑可以继续扩展形成面积大于50 μm2的蚀坑。

     

  • 图 1  试样尺寸

    Figure 1.  Sample size

    图 2  腐蚀试验

    Figure 2.  Corrosion test

    图 3  铝锂合金的BSE显微结构

    Figure 3.  BSE microstructure of Al-Li alloy

    图 4  铝锂合金的STEM显微结构

    Figure 4.  STEM microstructure of Al-Li alloy

    图 5  合金在30% HNO3中的典型腐蚀形貌

    Figure 5.  Typical corrosion morphology of alloy in 30% HNO3

    图 6  图像处理方法的分块示意

    Figure 6.  Block diagram of image processing method of chunking

    图 7  图像处理示意

    Figure 7.  Schematic diagram of image processing

    图 8  不同人工缺陷深度的腐蚀坑指标统计

    Figure 8.  Statistics on corrosion pit index of artificial defects with different depths

    表  1  室温下2195-T8铝锂合金的基本力学性能

    Table  1.   Basic mechanical properties of 2195-T8 Al-Li alloy at room temperature

    材料 抗拉强度σb/MPa 屈服强度σs/MPa 断裂延伸率δ/% 弹性模量E/GPa
    2195-T8 609.9 583.3 11.4 72.3
    下载: 导出CSV

    表  2  颗粒的EDS分析结果

    Table  2.   EDS analysis results of the particles

    元素 质量分数 元素 质量分数
    Cu 0.0528 Mg 0.0491
    Al 0.75 Fe 0.1481
    下载: 导出CSV

    表  3  d = 0.8 mm人工缺陷试样在不同腐蚀时间的点蚀坑数量

    Table  3.   The number of pitting pits of d = 0.8 mm artificial defect samples at different corrosion times

    腐蚀时间/h 点蚀坑数量
    A1 A2 A3 A4
    6 466 138 22 2
    12 814 199 35 9
    18 665 196 78 32
    下载: 导出CSV
  • [1] RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. doi: 10.1007/s11661-012-1155-z
    [2] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56: 862-871.
    [3] LEQUEU P, SMITH K P, DANIÉLOU A. Aluminum-Copper-Lithium alloy 2050 developed for medium to thick plate[J]. Journal of Materials Engineering and Performance, 2010, 19(6): 841-847. doi: 10.1007/s11665-009-9554-z
    [4] WARNER T. Recently-developed aluminium solutions for aerospace applications[J]. Materials Science Forum, 2006, 519-521: 1271-1278.
    [5] DANIÉLOU A, RONXIN J, NARDIN C, et al. Fatigue resistance of Al-Cu-Li and comparison with 7xxx aerospace alloys[C]//Proceedings of the 13th International Conference on Aluminum Alloys. Berlin: Springer, 2012: 511-516.
    [6] TSIVOULAS D, ROBSON J D. Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys[J]. Acta Materialia, 2015, 93(7): 73-86. doi: 10.1016/j.actamat.2015.03.057
    [7] NAYAN N, MURTY S V S N, JHA A K, et al. Processing and characterization of Al-Cu-Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique[J]. Materials Science and Engineering:A, 2013, 576(8): 21-28. doi: 10.1016/j.msea.2013.03.054
    [8] SINGH V, SATYA PRASAD K, GOKHALE A A. Effect of minor Sc additions on structure, age hardening and tensile properties of aluminium alloy AA8090 plate[J]. Scripta Materialia, 2004, 50(6): 903-908. doi: 10.1016/j.scriptamat.2003.12.001
    [9] KRUG M E, SEIDMAN D N, DUNAND D C. Creep properties and precipitate evolution in Al-Li alloys microalloyed with Sc and Yb[J]. Materials Science and Engineering:A, 2012, 550(7): 300-311. doi: 10.1016/j.msea.2012.04.075
    [10] 郭一, 常新龙, 田干, 等. 拉-拉载荷下2195-T8铝锂合金在N2O4中的预腐蚀疲劳研究[J]. 稀有金属材料与工程, 2022, 51(9): 3459-3465.

    GUO Y, CHANG X L, TIAN G, et al. Pre-corrosion fatigue performance of 2195-T8 Al-Li alloy in N2O4 under tension-tension load[J]. Rare Metal Materials and Engineering, 2022, 51(9): 3459-3465(in Chinese).
    [11] LI J F, ZHENG Z Q, REN W D, et al. Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al-Cu-Li alloys[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(6): 1268-1273. doi: 10.1016/S1003-6326(07)60005-3
    [12] 李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011: 125-131.

    LI Y Y. Liquid propellant [M]. Beijing: China Aerospace Publishing House, 2011: 125-131(in Chinese).
    [13] LIN Y, LU C G, WEI C Y, et al. Effect of aging treatment on microstructures, tensile properties and intergranular corrosion behavior of Al-Cu-Li alloy[J]. Materials Characterization, 2018, 141(7): 163-168. doi: 10.1016/j.matchar.2018.04.043
    [14] MA Y, ZHOU X, HUANG W, et al. Localized corrosion in AA2099-T83 aluminum-lithium alloy: The role of intermetallic particles[J]. Materials Chemistry and Physics, 2015, 161(7): 201-210. doi: 10.1016/j.matchemphys.2015.05.037
    [15] DE SOUSA ARAUJO J V, DONATUS U, QUEIROZ F M, et al. On the severe localized corrosion susceptibility of the AA2198-T851 alloy[J]. Corrosion Science, 2018, 133(4): 132-140. doi: 10.1016/j.corsci.2018.01.028
    [16] ZHANG X X, ZHOU X R, HASHIMOTO T, et al. Corrosion behaviour of 2A97-T6 Al-Cu-Li alloy: The influence of non-uniform precipitation[J]. Corrosion Science, 2018, 132(3): 1-8. doi: 10.1016/j.corsci.2017.12.010
    [17] HUANG J L, LI J F, LIU D Y, et al. Correlation of intergranular corrosion behaviour with microstructure in Al-Cu-Li alloy[J]. Corrosion Science, 2018, 139(7): 215-226. doi: 10.1016/j.corsci.2018.05.011
    [18] LIU D Y, SANG F J, LI J F, et al. The role of grain structure characteristics on the localised corrosion feature in the 1445 Al-Cu-Li alloy[J]. Materials Characterization, 2019, 158(12): 109981. doi: 10.1016/j.matchar.2019.109981
    [19] ZHANG X, ZHOU X, HASHIMOTO T, et al. The influence of grain structure on the corrosion behaviour of 2A97-T3 Al-Cu-Li alloy[J]. Corrosion Science, 2017, 116(2): 14-21. doi: 10.1016/j.corsci.2016.12.005
    [20] LEI X W, SAATCHI A, GHANBARI E, et al. Studies on pitting corrosion of Al-Cu-Li alloys Part I: Effect of Li addition by microstructural, electrochemical, in-situ, and pit depth analysis[J]. Materials, 2019, 12(10): 1600. doi: 10.3390/ma12101600
    [21] LUO C, ALBU S P, ZHOU X R, et al. Continuous and discontinuous localized corrosion of a 2xxx aluminium-copper-lithium alloy in sodium chloride solution[J]. Journal of Alloys and Compounds, 2016, 658(2): 61-70. doi: 10.1016/j.jallcom.2015.10.185
    [22] DONATUS U, TERADA M, OSPINA C R, et al. On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour[J]. Corrosion Science, 2018, 131(2): 300-309. doi: 10.1016/j.corsci.2017.12.001
    [23] LI M C, SEYEUX A, WIAME F, et al. Insights on the Al-Cu-Fe-Mn intermetallic particles induced pitting corrosion of Al-Cu-Li alloy[J]. Corrosion Science, 2020, 176(11): 109040. doi: 10.1016/j.corsci.2020.109040
    [24] LIU D J, TIAN G, JIN G F, et al. Characterization of localized corrosion pathways in 2195-T8 Al–Li alloys exposed to acidic solution[J]. Defence Technology, 2023, 25(7): 152-165. doi: 10.1016/j.dt.2022.05.004
    [25] 郭一, 田干, 刘德俊, 等. 酸性环境中的铝锂合金腐蚀行为及其元胞自动机模拟[J]. 中国机械工程, 2022, 33(8): 1001-1007. doi: 10.3969/j.issn.1004-132X.2022.08.016

    GUO Y, TIAN G, LIU D J, et al. Corrosion behavior of aluminum lithium alloys in acidic environment and cellular automata simulation[J]. China Mechanical Engineering, 2022, 33(8): 1001-1007(in Chinese). doi: 10.3969/j.issn.1004-132X.2022.08.016
    [26] TIAN G, JIN G F, ZHANG W, et al. Investigation on electrochemical corrosion characteristic of 2A14 aluminum alloy in nitric acid[J]. Surface Review and Letters, 2017, 24(S1): 1850016.
    [27] FENG Y B, HUANG Z, TIAN G, et al. Correlation study on general and accelerated corrosion of the welded structure of aluminum alloy 2219 in N2O4[J]. Anti-Corrosion Methods and Materials, 2015, 62(3): 136-142. doi: 10.1108/ACMM-01-2015-1498
    [28] 国家市场监督管理总局, 国家标准化管理委员会. 金属材料 疲劳试验 变幅疲劳试验第1部分: 总则、试验方法和报告要求: GB/T 37306.1—2019[S]. 北京: 中国标准出版社, 2019: 3-5.

    State Administration for Market Regulation, Standardization Administration of of the People's Republic of China. Metallic materials-fatigue testing-variable amplitude fatigue testing Part 1: General principles, test method and reporting requirements: GB/T 37306.1—2019 [S]. Beijing: Standards Press of China, 2019: 3-5(in Chinese).
    [29] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 疲劳试验 疲劳裂纹扩展方法: GB/T 6398—2017 [S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials—Fatigue testing—Fatigue crack growth method: GB/T 6398—2017 [S]. Beijing: Standards Press of China, 2017(in Chinese).
    [30] MA Y L, ZHOU X R, MENG X M, et al. Influence of thermomechanical treatments on localized corrosion susceptibility and propagation mechanism of AA2099 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1472-1481. doi: 10.1016/S1003-6326(16)64252-8
    [31] WANG X H, WANG J H, YUE X, et al. Effect of aging treatment on the exfoliation corrosion and stress corrosion cracking behaviors of 2195 Al-Li alloy[J]. Materials and Design, 2015, 67(2): 596-605.
    [32] BOAG A, HUGHES A E, WILSON N C, et al. How complex is the microstructure of AA2024-T3?[J]. Corrosion Science, 2009, 51(8): 1565-1568. doi: 10.1016/j.corsci.2009.05.001
    [33] HUGHES A E, BOAG A, GLENN A M, et al. Corrosion of AA2024-T3 Part II: Co-operative corrosion[J]. Corrosion Science, 2011, 53(1): 27-39. doi: 10.1016/j.corsci.2010.09.030
    [34] 李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81-83,90. doi: 10.3321/j.issn:1005-023X.2005.02.024

    LI J F, ZHENG Z Q, REN W D. Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Materials Review, 2005, 19(2): 81-83(in Chinese). doi: 10.3321/j.issn:1005-023X.2005.02.024
    [35] ZHAO K, LIU J H, YU M, et al. Through-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of Al-Li alloy thick plate[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1793-1802. doi: 10.1016/S1003-6326(19)65087-9
    [36] GLENN A M, MUSTER T H, LUO C, et al. Corrosion of AA2024-T3 Part III: Propagation[J]. Corrosion Science, 2011, 53(1): 40-50. doi: 10.1016/j.corsci.2010.09.035
    [37] WU P F, DENG Y L, ZHANG J, et al. The effect of inhomogeneous microstructures on strength and fatigue properties of an Al-Cu-Li thick plate[J]. Materials Science and Engineering:A, 2018, 731(7): 1-11. doi: 10.1016/j.msea.2018.06.033
    [38] GHANBARI E, SAATCHI A, LEI X W, et al. Studies on pitting corrosion of Al-Cu-Li alloys Part II: Breakdown potential and pit initiation[J]. Materials, 2019, 12(11): 1786. doi: 10.3390/ma12111786
    [39] BOAG A, HUGHES A E, GLENN A M, et al. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated im particles[J]. Corrosion Science, 2011, 53(1): 17-26. doi: 10.1016/j.corsci.2010.09.009
    [40] PROTON V, ALEXIS J, ANDRIEU E, et al. The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium-copper-lithium alloy[J]. Corrosion Science, 2014, 80(3): 494-502. doi: 10.1016/j.corsci.2013.11.060
    [41] 周松, 许良, 回丽, 等. 不同腐蚀环境下高强铝合金腐蚀行为[J]. 中国机械工程, 2017, 28(16): 2000-2007. doi: 10.3969/j.issn.1004-132X.2017.16.016

    ZHOU S, XU L, HUI L, et al. Corrosion behavior of high strength aluminum alloy under different corrosion environments[J]. China Mechanical Engineering, 2017, 28(16): 2000-2007(in Chinese). doi: 10.3969/j.issn.1004-132X.2017.16.016
    [42] PAIK J K, LEE J M, KO M J. Ultimate shear strength of plate elements with pit corrosion wastage[J]. Thin-Walled Structures, 2004, 42(8): 1161-1176. doi: 10.1016/j.tws.2004.03.024
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  78
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 录用日期:  2022-09-11
  • 网络出版日期:  2022-09-22
  • 整期出版日期:  2024-03-31

目录

    /

    返回文章
    返回
    常见问答