留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于领航者跟随者的群系统保性能编队控制

王琳 张庆杰 陈宏伟

王琳,张庆杰,陈宏伟. 基于领航者跟随者的群系统保性能编队控制[J]. 北京航空航天大学学报,2024,50(3):1037-1046 doi: 10.13700/j.bh.1001-5965.2022.0371
引用本文: 王琳,张庆杰,陈宏伟. 基于领航者跟随者的群系统保性能编队控制[J]. 北京航空航天大学学报,2024,50(3):1037-1046 doi: 10.13700/j.bh.1001-5965.2022.0371
WANG L,ZHANG Q J,CHEN H W. Guaranteed-performance formation control of swarm systems based on leader-follower strategy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1037-1046 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0371
Citation: WANG L,ZHANG Q J,CHEN H W. Guaranteed-performance formation control of swarm systems based on leader-follower strategy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1037-1046 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0371

基于领航者跟随者的群系统保性能编队控制

doi: 10.13700/j.bh.1001-5965.2022.0371
详细信息
    通讯作者:

    E-mail:nudtzhang@hotmail.com

  • 中图分类号: V249

Guaranteed-performance formation control of swarm systems based on leader-follower strategy

More Information
  • 摘要:

    针对群系统编队跟踪控制问题,提出了一种切换拓扑下保性能的优化控制方法。建立了基于领航跟随结构的编队跟踪控制问题的数学描述,引入分布式性能指标描述群系统编队调节性能。利用一致性理论设计了基于领航跟随结构的编队控制协议。借助李雅普诺夫方法分析系统的闭环稳定性,给出保性能上界的数学表达形式。利用数值仿真验证了所提控制方法的有效性,群系统可在性能上界下实现编队跟踪控制,且在编队跟踪速度和消耗性能方面优于已有文献。

     

  • 图 1  领航者跟随者之间的拓扑图

    Figure 1.  Topologies between leader and followers

    图 2  跟随者的三维运动轨迹

    Figure 2.  Three-dimensional trajectories of followers

    图 3  跟随者的轨迹侧视图

    Figure 3.  Lateral view of trajectories of followers

    图 4  不同时刻主体状态演化过程

    Figure 4.  State evolution process of agents at different times

    图 5  3个不同方向上的领航者跟踪误差

    Figure 5.  Leader tracking errors in three different directions

    图 6  3个不同方向上的编队跟踪误差

    Figure 6.  Formation tracking errors in three different directions

    图 7  实际消耗性能指标与性能上界

    Figure 7.  Actual consumed performance index and upper bound of guaranteed performance

    图 8  不同方法下消耗性能指标

    Figure 8.  Cost of performance index in different methods

    表  1  编队跟踪误差收敛时间

    Table  1.   Convergence time of formation tracking errors

    $ \alpha $ 收敛时间/s
    0.2 4.8
    0.4 4.7
    0.6 4.6
    0.8 4.2
    1.0 4.1
    下载: 导出CSV

    表  2  不同方法下编队跟踪误差收敛时间、消耗性能指标和控制参数取值

    Table  2.   Convergence time of formation tracking errors, cost of performance and values of control parameters in different methods

    方法 收敛时间/s 消耗性能指标 控制参数取值
    本文方法 9.6 742.1088 $ \begin{gathered} {{\boldsymbol{K}}_1} = \left[ {\begin{array}{*{20}{r}} { - 2.938\;9}&{ - 2.979\;9}&{ - 0.791\;3}&{0.074\;8}&{0.863\;8}&{0.389\;0} \\ {0.985\;1}&{ - 0.007\;6}&{ - 2.891\;5}&{ - 2.987\;5}&{0.462\;8}&{0.221\;8} \\ { - 0.324\;9}&{ - 0.119\;7}&{0.009\;4}&{ - 0.179\;9}&{ - 2.083\;4}&{ - 3.032\;6} \end{array}} \right] \\ {{\boldsymbol{K}}_2} = {{\boldsymbol{I}}_3} \otimes \left[ {\begin{array}{*{20}{c}} {30.011\;2}&{29.798\;4} \end{array}} \right] \\ \end{gathered} $
    文献[26,37] 12.1 797.3386 $ {{\boldsymbol{K}}}_{1}={{\boldsymbol{I}}}_{3}\otimes \left[\begin{array}{cc}-8.560\;4& -11.757\;4\end{array}\right],{{\boldsymbol{K}}}_{2}={{\boldsymbol{I}}}_{3}\otimes \left[\begin{array}{cc}8.560\;4& 11.757\;4\end{array}\right] $
    文献[27,38-39] 15.3 877.5561 $ {{\boldsymbol{K}}}_{1}={{\boldsymbol{I}}}_{3}\otimes \left[\begin{array}{cc}-5.364\;8& -9.292\;1\end{array}\right],{{\boldsymbol{K}}}_{2}={{\boldsymbol{I}}}_{3}\otimes \left[\begin{array}{cc}5.364\;8& 9.292\;1\end{array}\right] $
    文献[28] 11.9 $ {{\boldsymbol{K}}}_{1}={{\boldsymbol{I}}}_{3}\otimes \left[\begin{array}{cc}-3.170\;5& -4.354\;6\end{array}\right],{{\boldsymbol{K}}}_{2}={{\boldsymbol{I}}}_{3}\otimes \left[\begin{array}{cc}3.170\;5& 4.354\;6\end{array}\right] $
    下载: 导出CSV
  • [1] 王祥科, 陈浩, 赵述龙. 大规模固定翼无人机集群编队控制方法[J]. 控制与决策, 2021, 36(9): 2063-2073.

    WANG X K, CHEN H, ZHAO S L. Formation control of large-scale fixed-wing unmanned aerial vehicle swarms[J]. Control and Decision, 2021, 36(9): 2063-2073(in Chinese).
    [2] XIE Y, HAN L, DONG X, et al. Bio-inspired adaptive formation tracking control for swarm systems with application to UAV swarm systems[J]. Neurocomputing, 2021, 453: 272-285. doi: 10.1016/j.neucom.2021.05.015
    [3] 王晶, 顾维博, 窦立亚. 基于 Leader-Follower 的多无人机编队轨迹跟踪设计[J]. 航空学报, 2020, 41(S1): 723758.

    WANG J, GU W B, DOU L Y. Leader-follower formaion control of multiple UAVs with trajectory tracking design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723758(in Chinese).
    [4] 吴宇, 梁天骄. 基于改进一致性算法的无人机编队控制[J]. 航空学报, 2020, 41(9): 323848. doi: 10.7527/S1000-6893.2020.23848

    WU Y, LIANG T J. Improved consensus-based algorithm for unmanned aerial vehicle formation control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 323848(in Chinese). doi: 10.7527/S1000-6893.2020.23848
    [5] 田磊, 董希旺, 赵启伦, 等. 异构集群系统分布式自适应输出时变编队跟踪控制[J]. 自动化学报, 2021, 47(10): 2386-2401.

    TIAN L, DONG X W, ZHAO Q L, et al. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems[J]. Acta Automatica Sinica, 2021, 47(10): 2386-2401(in Chinese).
    [6] 费思远, 鲜斌, 王岭. 基于群集行为的分布式多无人机编队动态避障控制[J]. 控制理论与应用, 2022, 39(1): 1-11. doi: 10.7641/CTA.2021.10082

    FEI S Y, XIAN B, WANG L. Distributed formation control for multiple unmanned aerial vehicles with dynamic obstacle avoidance based on the flocking behavior[J]. Control Theory & Applications, 2022, 39(1): 1-11(in Chinese). doi: 10.7641/CTA.2021.10082
    [7] 郭洪振, 陈谋. 基于预设性能的四旋翼无人机编队安全控制[J]. 航空学报, 2021, 42(8): 525789. doi: 10.7527/S1000-6893.2021.25789

    GUO H Z, CHEN M. Safety formation control of quadrotor UAVs based on prescribed performance[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525789(in Chinese). doi: 10.7527/S1000-6893.2021.25789
    [8] 杨慧欣. 基于循环追踪控制的卫星编队构形调整控制律设计[J]. 航空学报, 2020, 41(S2): 724311.

    YANG H X. Cyclic pursuit control method design for spacecraft formation configuration adjustment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724311(in Chinese).
    [9] 宗群, 谷友博, 张秀云, 等. 角速度约束卫星编队控制与虚拟演示验证[J]. 哈尔滨工业大学学报, 2021, 53(3): 193-200. doi: 10.11918/202007131

    ZONG Q, GU Y B, ZHANG X Y. Satellite formation control and virtual demonstration verification under angular velocity constraint[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 193-200(in Chinese). doi: 10.11918/202007131
    [10] 王常顺, 王丹, 彭周华. 单路径导引的车式移动机器人协同编队控制[J]. 控制理论与应用, 2021, 38(7): 1124-1132. doi: 10.7641/CTA.2021.00709

    WANG C S, WANG D, PENG Z H. Coordinated formation control of car-like mobile robots guided by parameterized single path[J]. Control Theory & Applications, 2021, 38(7): 1124-1132(in Chinese). doi: 10.7641/CTA.2021.00709
    [11] 谭瑶, 梅杰. 利用方位角信息的移动机器人编队控制[J]. 控制理论与应用, 2021, 38(7): 1043-1050. doi: 10.7641/CTA.2021.00718

    TAN Y, MEI J. Formation control of mobile robots using bearing-only measurements[J]. Control Theory & Applications, 2021, 38(7): 1043-1050(in Chinese). doi: 10.7641/CTA.2021.00718
    [12] WANG J, XIN M. Integrated optimal formation control of multiple unmanned aerial vehicles[J]. IEEE Transactions on Control Systems Technology, 2012, 21(5): 1731-1744.
    [13] DYDEK Z T, ANNASWAMY A M, LAVRETSKY E. Adaptive configuration control of multiple UAVs[J]. Control Engineering Practice, 2013, 21(8): 1043-1052. doi: 10.1016/j.conengprac.2013.03.010
    [14] BAYEZIT I, FIDAN B. Distributed cohesive motion control of flight vehicle formations[J]. IEEE Transactions on Industrial Electronics, 2012, 60(12): 5763-5772.
    [15] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
    [16] WANG X. Multi-agent time-varying formation control based on consistency[C]//Journal of Physics: Conference Series. Bristol: IOP Publishing, 2021, 1865(2): 022031.
    [17] YU J L, DONG X W, LI Q D, et al. Distributed adaptive cooperative time-varying formation tracking guidance for multiple aerial vehicles system[J]. Aerospace Science and Technology, 2021, 117: 106925. doi: 10.1016/j.ast.2021.106925
    [18] LIU X, XIE Y, LI F, et al. Time-varying formation control of singular multi-agent systems with multiple leaders[C]//2020 IEEE 16th International Conference on Control & Automation (ICCA). Piscataway: IEEE Press, 2020: 193-198.
    [19] 石晓航, 张庆杰, 吕俊伟. 基于自由权矩阵的时变时延线性群系统编队控制[J]. 航空学报, 2018, 39(3): 321628.

    SHI X H, ZHANG Q J, LYU J W. Formation control for linear swarm systems with time-varying delays based on free-weighting matrices[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 321628(in Chinese).
    [20] DONG X, YU B, SHI Z, et al. Time-varying formation control for unmanned aerial vehicles: Theories and applications[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1): 340-348.
    [21] NIAN X H, SU S J, PAN H. Consensus tracking protocol and formation control of multi-agent systems with switching topology[J]. Journal of Central South University of Technology, 2011, 18(4): 1178-1183. doi: 10.1007/s11771-011-0820-5
    [22] DONG X, SHI Z, LU G, et al. Time-varying formation control for high-order linear swarm systems with switching interaction topologies[J]. IET Control Theory & Applications, 2014, 8(18): 2162-2170.
    [23] 石晓航, 张庆杰, 吕俊伟. 复杂通信条件下的线性群系统编队控制方法[J]. 信息与控制, 2018, 47(3): 297-305.

    SHI X H, ZHANG Q J, LYU J W. Formation control for linear swarm systems with complex communication conditions[J]. Information and Control, 2018, 47(3): 297-305(in Chinese).
    [24] 刘流, 梁晓龙, 张佳强, 等. 切换通信拓扑条件下的无人机集群构型变换控制[J]. 兵工学报, 2019, 40(5): 996-1002. doi: 10.3969/j.issn.1000-1093.2019.05.012

    LIU L, LIANG X L, ZHANG J Q, et al. UAV swarm formation reconfiguration control with switching interaction topologies[J]. Control and Decision, 2019, 40(5): 996-1002(in Chinese). doi: 10.3969/j.issn.1000-1093.2019.05.012
    [25] DONG X, ZHOU Y, REN Z, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies[J]. Control Engineering Practice, 2016, 46: 26-36. doi: 10.1016/j.conengprac.2015.10.001
    [26] DONG X W, LI Y F, LU C, et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(12): 3674-3685.
    [27] DONG X, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2016, 64(6): 5014-5024.
    [28] 周绍磊, 祁亚辉, 张雷, 等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4): 320452.

    ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 320452(in Chinese).
    [29] YU C B, WANG Y Q, SHAO J L. Optimization of formation for multi-agent systems based on LQR[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(2): 96-109.
    [30] HU J Y, LANZON A. Cooperative adaptive time-varying formation tracking for multi-agent systems with LQR performance index and switching directed topologies[C]//2018 IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2018: 5102-5107.
    [31] 石晓航, 张庆杰, 吕俊伟. 一类复杂通信条件下高阶线性群系统编队控制[J]. 北京航空航天大学学报, 2020, 46(4): 769-780.

    SHI X H, ZHANG Q J, LYU J W. Formation control for high-order linear swarm systems with complex communication conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 769-780(in Chinese).
    [32] XI J, WANG C, LIU H, et al. Completely distributed guaranteed-performance consensualization for high-order multiagent systems with switching topologies[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(7): 1338-1348.
    [33] 王未, 王莉, 黄迟. 脉冲控制下多智能体系统的保性能双向编队控制[J]. 控制与决策, 2021, 36(1): 180-186.

    WANG W, WANG L, HUANG C. Guaranteed cost bipartite formation problem of multi-agent systems with impulse control[J]. Control and Decision, 2021, 36(1): 180-186(in Chinese).
    [34] 权婉珍, 罗哲, 杨小冈, 等. 间歇通信条件下多无人机保性能编队追踪控制[J]. 系统工程与电子技术, 2021, 43(11): 3288-3294. doi: 10.12305/j.issn.1001-506X.2021.11.29

    QUAN W Z, LUO Z, YANG X G, et al. Guaranteed-performance formation tracking control of UAVs with intermittent communication[J]. Systems Engineering and Electronic, 2021, 43(11): 3288-3294(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.11.29
    [35] HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge : Cambridge University Press, 2012: 166-168.
    [36] 郑大钟. 线性系统理论[M]. 北京: 清华大学出版社, 2002: 153-154.

    ZHENG D Z. Linear system theory[M]. Beijing: Tsinghua University Press, 2002: 153-154(in Chinese).
    [37] XIANG J, LI Y, DONG X, et al. Time-varying formation tracking for second-order multi-agent systems with switching directed topologies[C]//2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway: IEEE Press, 2017: 252-257.
    [38] DONG X, XIANG J, HAN L, et al. Distributed time-varying formation tracking analysis and design for second-order multi-agent systems[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2): 277-289.
    [39] DONG X, HAN L, LI Q, et al. Time-varying formation tracking for second-order multi-agent systems with one leader[C]//2015 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2015: 1046-1051.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  14
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 录用日期:  2023-02-24
  • 网络出版日期:  2023-09-04
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答