留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MPC-PIO的无人飞行器集群编队重构控制

廖剑 高向阳 闫实 周绍磊 王东来 康宇航

廖剑,高向阳,闫实,等. 基于MPC-PIO的无人飞行器集群编队重构控制[J]. 北京航空航天大学学报,2024,50(5):1541-1550 doi: 10.13700/j.bh.1001-5965.2022.0398
引用本文: 廖剑,高向阳,闫实,等. 基于MPC-PIO的无人飞行器集群编队重构控制[J]. 北京航空航天大学学报,2024,50(5):1541-1550 doi: 10.13700/j.bh.1001-5965.2022.0398
LIAO J,GAO X Y,YAN S,et al. Formation reconfiguration control of UAV swarm based on MPC-PIO[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1541-1550 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0398
Citation: LIAO J,GAO X Y,YAN S,et al. Formation reconfiguration control of UAV swarm based on MPC-PIO[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1541-1550 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0398

基于MPC-PIO的无人飞行器集群编队重构控制

doi: 10.13700/j.bh.1001-5965.2022.0398
基金项目: 江西省教育厅科学技术研究项目(GJJ201410);江西省重点研发计划(20203BBF63043)
详细信息
    通讯作者:

    E-mail:yh.kang1@siat.ac.cn

  • 中图分类号: V249.1;TP273

Formation reconfiguration control of UAV swarm based on MPC-PIO

Funds: Science & Technology Project of Jiangxi Educational Committee (GJJ201410); Key Research and Development Programs of Jiangxi Province (20203BBF63043)
More Information
  • 摘要:

    针对存在各种障碍条件下的战场环境,为实现无人飞行器集群安全避障并进行快速精确打击,集群必须具备自主队形重构的能力。因此,建立了无人飞行器运动模型与领航跟随集群编队控制结构,并提出基于模型预测控制(MPC)框架的无人飞行器集群编队重构控制代价函数、避障代价函数及避碰代价函数,进一步运用鸽群优化(PIO)算法对重构问题进行优化求解。基于数值对比仿真实验结果,所提算法在集群编队跟踪误差和寻优速度方面表现出色。结果表明:所提算法能实现集群自主重构,并提高MPC方法的效率。

     

  • 图 1  集群编队控制结构

    Figure 1.  Control structure of UAV formation

    图 2  距离-角度编队示意图

    Figure 2.  Diagram of distance-angle formation

    图 3  无人飞行器避障

    Figure 3.  Obstacle avoidance of UAV

    图 4  安全避碰保护区

    Figure 4.  Protected area for safe collision avoidance

    图 5  集群避碰流程

    Figure 5.  Flow chart of swarm collision avoidance

    图 6  无人飞行器集群飞行轨迹

    Figure 6.  Flight track of UAV swarm

    图 7  位置跟踪误差曲线

    Figure 7.  Error curves of tracking position

    图 8  速度跟踪误差曲线

    Figure 8.  Error curves of tracking velocity

    图 9  航向角跟踪误差曲线

    Figure 9.  Error curves of tracking course angle

    图 10  滚转角跟踪误差曲线

    Figure 10.  Error curves of tracking roll angle

    图 11  PIO与PSO迭代对比曲线

    Figure 11.  Curves of iterative comparison between PIO and PSO

    表  1  无人飞行器初始状态

    Table  1.   Initial state of UAV

    无人飞行器 $\left( {x,y} \right)/{\mathrm{km}}$ $ v/ ( {{\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}} ) $ $ \chi /\left( ^\circ \right) $ $ \alpha /\left( ^\circ \right) $
    无人飞行器1 $\left( {3.8,4.1} \right)$ $160$ 90 0
    无人飞行器2 $ \left( {2.8,4.9} \right) $ $199$ 85 0
    无人飞行器3 $ \left( {3.2,3.4} \right) $ $202$ 91 0
    无人飞行器4 $ \left( {1.8,6.5} \right) $ $201$ 100 0
    无人飞行器5 $ \left( {1.9,1.7} \right) $ $196$ 82 0
    下载: 导出CSV

    表  2  集群编队期望构型

    Table  2.   Expected configuration of swarm formation

    编队期望构型 $ {\rho ^{\mathrm{d}}}/{\mathrm{m}} $ $ {\theta ^{\mathrm{d}}}/\left( ^\circ \right) $
    无人飞行器1-2 500 30
    无人飞行器1-3 500 −30
    无人飞行器1-4 1000 30
    无人飞行器1-5 1000 −30
    下载: 导出CSV

    表  3  领导者无人飞行器预定飞行速度与滚转角

    Table  3.   Pre-set speed and roll angle of leader UAV

    时间段/s $ {v_{\mathrm{L}}}/ ( {{\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}} ) $ $ {\alpha _{\mathrm{L}}}/\left( ^\circ \right) $
    0~74.5 $160$ 0
    75~124.5 $160$ −20
    125~200 $160$ 0
    下载: 导出CSV

    表  4  约束条件

    Table  4.   Constraint condition

    ${v_{\min }}$/(m·s−1) vmax/(m·s−1) $\Delta {v_{\max }}$/(m·s−2) ${\chi _{\min }}$/(°) ${\chi _{\max }}$/(°) $\Delta {\chi _{\max }}$/((°)·s−1) ${\alpha _{\min }}$/(°) ${\alpha _{{{\mathrm{m}}} {\text{ax}}}}$/(°) $\Delta {\alpha _{\max }}$/((°)·s−1)
    $120$ $240$ $50$ $0$ $360$ $15$ $ - 50$ $50$ $100$
    下载: 导出CSV

    表  5  无人飞行器模型参数与避障避碰参数

    Table  5.   Model parameters of UAV model & parameters of obstacle avoidance and collision avoidance

    ${\beta _v}$ ${\beta _\alpha }$ $ {r_{{j_1}}} $ $ {r_{{j_2}}} $
    3.0 0.6 0.4 0.4
    下载: 导出CSV

    表  6  MPC、PIO及PSO算法参数

    Table  6.   Parameters of MPC, PIO and PSO

    算法 $ {{\boldsymbol{Q}}_{{\text{F1}}}} $ $ {{\boldsymbol{Q}}_{{\text{F2}}}} $ $ {{\boldsymbol{Q}}_{{\text{F3}}}} $ $ {{\boldsymbol{Q}}_{{\text{F4}}}} $ $ {{\boldsymbol{Q}}_{{\text{F5}}}} $ $ {{\boldsymbol{R}}_{{\text{F1}}}} $
    MPC diag[0.4 0.4 0.05] diag[0.1 0.1 0.04] diag[0.1 0.1 0.03] diag[0.1 0.1 0.02] diag[0.1 0.1 0.01] diag[0.0004 0.0004]
    PIO
    PSO
    算法 $ {{\boldsymbol{R}}_{{{\text{F}}_{\text{2}}}}} $ $ {{\boldsymbol{R}}_{{\text{F3}}}} $ $ {{\boldsymbol{R}}_{{\text{F4}}}} $ $ {N_{{\text{r}} 1 {\mathrm{max}} }} $ $ {N_{{\text{r2max}}}} $ $ P $
    MPC diag[0.0003 0.0003] diag[0.0002 0.0002] diag[0.0001 0.0001]
    PIO 300 30 0.2
    PSO
    算法 $ {N_{{\mathrm{P}} - {\mathrm{pio}}}} $ $ {N_{{\mathrm{P}} - {\mathrm{pso}}}} $ $ {N_{\mathrm{c}}} $ $ {w_{{\mathrm{pso}}}} $ $ {c_1} $ $ {c_2} $
    MPC
    PIO 120
    PSO 120 500 0.8 2.0 2.0
    下载: 导出CSV
  • [1] DUAN H B, ZHAO J X, DENG Y M, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 706-720. doi: 10.1109/TAES.2020.3029624
    [2] NEW W K, LEOW C Y, NAVAIE K, et al. Application of NOMA for cellular-connected UAVs: Opportunities and challenges[J]. Science China Information Sciences, 2021, 64(4): 140302. doi: 10.1007/s11432-020-2986-8
    [3] LIU Y Y, MONTENBRUCK J M, ZELAZO D, et al. A distributed control approach to formation balancing and maneuvering of multiple multirotor UAVs[J]. IEEE Transactions on Robotics, 2018, 34(4): 870-882. doi: 10.1109/TRO.2018.2853606
    [4] HOANG V T, PHUNG M D, DINH T H, et al. System architecture for real-time surface inspection using multiple UAVs[J]. IEEE Systems Journal, 2020, 14(2): 2925-2936. doi: 10.1109/JSYST.2019.2922290
    [5] ZHOU R, FENG Y, DI B, et al. Multi-UAV cooperative target tracking with bounded noise for connectivity preservation[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(10): 1494-1503.
    [6] DONG X W, LI Y F, LU C, et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3674-3685. doi: 10.1109/TNNLS.2018.2873063
    [7] GONG J Y, MA Y J, JIANG B, et al. Fault-tolerant formation tracking control for heterogeneous multiagent systems with directed topology[J]. Guidance, Navigation and Control, 2021, 1(1): 2150001. doi: 10.1142/S2737480721500011
    [8] KHOSHNOUD F, ESAT I I, DE SILVA C W, et al. Self-powered solar aerial vehicles: Towards infinite endurance UAVs[J]. Unmanned Systems, 2020, 8(2): 95-117. doi: 10.1142/S2301385020500077
    [9] 沈林成, 王祥科, 朱华勇, 等. 基于拟态物理法的无人机集群与重构控制[J]. 中国科学(技术科学), 2017, 47(3): 266-285. doi: 10.1360/N092016-00161

    SHEN L C, WANG X K, ZHU H Y, et al. UAVs flocking and reconfiguration control based on artificial physics[J]. Scientia Sinica (Technologica), 2017, 47(3): 266-285(in Chinese). doi: 10.1360/N092016-00161
    [10] 卢燕梅, 宗群, 张秀云, 等. 集群无人机队形重构及虚拟仿真验证[J]. 航空学报, 2020, 41(4): 323580.

    LU Y M, ZONG Q, ZHANG X Y, et al. Formation reconstruction and virtual simulation verification of swarm UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 323580(in Chinese).
    [11] LIAO F, TEO R, WANG J L, et al. Distributed formation and reconfiguration control of VTOL UAVs[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 270-277. doi: 10.1109/TCST.2016.2547952
    [12] LI B, ZHANG J W, DAI L, et al. A hybrid offline optimization method for reconfiguration of multi-UAV formations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 506-520. doi: 10.1109/TAES.2020.3024427
    [13] 宫勋, 赵常均, 王丽, 等. 基于双观测器并行结构的四旋翼无人机故障检测与重构[J]. 控制与决策, 2015, 30(7): 1214-1218.

    GONG X, ZHAO C J, WANG L, et al. Faults detection and reconstruction for quad-rotor aircraft based on double-observers parallel structure[J]. Control and Decision, 2015, 30(7): 1214-1218(in Chinese).
    [14] 毛琼, 李小民, 王正军. 基于规则的无人机编队队形构建与重构控制方法[J]. 系统工程与电子技术, 2019, 41(5): 1118-1126.

    MAO Q, LI X M, WANG Z J. Formation and reformation control method for UAVs formation shape based on rules[J]. Systems Engineering and Electronics, 2019, 41(5): 1118-1126(in Chinese).
    [15] WANG X H, ZHANG Y, WANG L Z, et al. Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory[J]. Chinese Journal of Aeronautics, 2020, 33(1): 352-364. doi: 10.1016/j.cja.2019.04.025
    [16] LIU H X, LIU F, ZHANG X J, et al. A formation reconfiguration algorithm for multi-UAVs based on distributed cooperative coevolutionary with an adaptive grouping strategy[J]. Chinese Journal of Electronics, 2020, 29(5): 841-851. doi: 10.1049/cje.2020.07.006
    [17] 马小山, 董文瀚, 李炳乾. 考虑拓扑故障的无人机编队容错控制方法研究[J]. 西北工业大学学报, 2020, 38(5): 1084-1093. doi: 10.1051/jnwpu/20203851084

    MA X S, DONG W H, LI B Q. A fault-tolerant control method for unmanned aerial vehicle (UAV) formation with topological faults considered[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 1084-1093(in Chinese). doi: 10.1051/jnwpu/20203851084
    [18] 周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学(技术科学), 2017, 47(3): 230-238. doi: 10.1360/N006-00138

    ZHOU Z W, DUAN H B, FAN Y M. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica (Technologica), 2017, 47(3): 230-238(in Chinese). doi: 10.1360/N006-00138
    [19] 马思迁, 董朝阳, 马鸣宇, 等. 基于自适应通信拓扑四旋翼无人机编队重构控制[J]. 北京航空航天大学学报, 2018, 44(4): 841-850.

    MA S Q, DONG C Y, MA M Y, et al. Formation reconfiguration control of quadrotor UAVs based on adaptive communication topology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 841-850(in Chinese).
    [20] 茹常剑, 魏瑞轩, 戴静, 等. 基于纳什议价的无人机编队自主重构控制方法[J]. 自动化学报, 2013, 39(8): 1349-1359.

    RU C J, WEI R X, DAI J, et al. Autonomous reconfiguration control method for UAV’s formation based on Nash bargain[J]. Acta Automatica Sinica, 2013, 39(8): 1349-1359(in Chinese).
    [21] 王寅, 王道波, 王建宏. 基于凸优化理论的无人机编队自主重构算法研究[J]. 中国科学(技术科学), 2017, 47(3): 249-258. doi: 10.1360/N092016-00194

    WANG Y, WANG D B, WANG J H. A convex optimization based method for multiple UAV autonomous formation reconfiguration[J]. Scientia Sinica (Technologica), 2017, 47(3): 249-258(in Chinese). doi: 10.1360/N092016-00194
    [22] 顾伟, 汤俊, 白亮, 等. 面向时间协同的多无人机队形变换最优效率模型[J]. 航空学报, 2019, 40(6): 322599.

    GU W, TANG J, BAI L, et al. Time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 322599(in Chinese).
    [23] 李樾, 韩维, 陈清阳, 等. 基于快速扩展随机树算法的多无人机编队重构方法研究[J]. 西北工业大学学报, 2019, 37(3): 601-611. doi: 10.1051/jnwpu/20193730601

    LI Y, HAN W, CHEN Q Y, et al. Research on formation reconfiguration of UAVs based on RRT algorithm[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 601-611(in Chinese). doi: 10.1051/jnwpu/20193730601
    [24] 席裕庚, 李德伟, 林姝. 模型预测控制−现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236. doi: 10.1016/S1874-1029(13)60024-5

    XI Y G, LI D W, LIN S. Model predictive control—Status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236(in Chinese). doi: 10.1016/S1874-1029(13)60024-5
    [25] 周绍磊, 康宇航, 史贤俊, 等. 基于RQPSO-DMPC的多无人机编队自主重构控制方法[J]. 北京航空航天大学学报, 2017, 43(10): 1960-1971.

    ZHOU S L, KANG Y H, SHI X J, et al. Autonomous reconfiguration control method for multi-UAV formation based on RQPSO-DMPC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1960-1971(in Chinese).
    [26] 赵超轮, 戴邵武, 赵国荣, 等. 基于分布式模型预测控制的无人机编队控制[J]. 控制与决策, 2022, 37(7): 1763-1771.

    ZHAO C L, DAI S W, ZHAO G R, et al. Formation control of multi-UAV based on distributed model predictive[J]. Control and Decision, 2022, 37(7): 1763-1771(in Chinese).
    [27] LEE S M, KIM H, MYUNG H, et al. Cooperative coevolutionary algorithm-based model predictive control guaranteeing stability of multirobot formation[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 37-51. doi: 10.1109/TCST.2014.2312324
    [28] XIAO H Z, CHEN C L P. Incremental updating multirobot formation using nonlinear model predictive control method with general projection neural network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4502-4512. doi: 10.1109/TIE.2018.2864707
    [29] FRANZÈ G, CASAVOLA A, FAMULARO D, et al. Distributed receding horizon control of constrained networked leader-follower formations subject to packet dropouts[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5): 1798-1809. doi: 10.1109/TCST.2017.2723869
    [30] 闫飞, 李浦, 续欣莹. 基于迭代学习与模型预测控制的交通信号混合控制方法[J]. 控制理论与应用, 2021, 38(3): 339-348.

    YAN F, LI P, XU X Y. Traffic signal hybrid control method based on iterative learning and model predictive control[J]. Control Theory & Applications, 2021, 38(3): 339-348(in Chinese).
    [31] 张方方, 陈波, 班旋旋, 等. 基于生物启发神经网络和DMPC的多机器人协同搜索算法[J]. 控制与决策, 2021, 36(11): 2699-2706.

    ZHANG F F, CHEN B, BAN X X, et al. Multi-robot cooperative search algorithm based on bio-inspired neural network and DMPC[J]. Control and Decision, 2021, 36(11): 2699-2706(in Chinese).
    [32] DUAN H B, QIAO P X. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37. doi: 10.1108/IJICC-02-2014-0005
    [33] 王瑞, 肖冰松. 基于改进鸽群优化和马尔可夫链的多无人机协同搜索方法[J]. 工程科学学报, 2019, 41(10): 1342-1350.

    WANG R, XIAO B S. Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach[J]. Chinese Journal of Engineering, 2019, 41(10): 1342-1350(in Chinese).
    [34] 徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报, 2020, 41(8): 323722.

    XU B, ZHANG D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323722(in Chinese).
    [35] FENG Q, HAI X S, SUN B, et al. Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization[J]. Chinese Journal of Aeronautics, 2022, 35(1): 110-123. doi: 10.1016/j.cja.2020.10.029
    [36] QIU H X, DUAN H B. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles[J]. Information Sciences, 2020, 509: 515-529. doi: 10.1016/j.ins.2018.06.061
    [37] REN W. Trajectory tracking control for a miniature fixed-wing unmanned air vehicle[J]. International Journal of Systems Science, 2007, 38(4): 361-368. doi: 10.1080/00207720601170586
    [38] 李霜琳, 何家皓, 敖海跃, 等. 基于鸽群优化算法的实时避障算法[J]. 北京航空航天大学学报, 2021, 47(2): 359-365.

    LI S L, HE J H, AO H Y, et al. Real-time obstacle avoidance algorithm based on pigeon-inspired optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 359-365(in Chinese).
    [39] 姜龙亭, 魏瑞轩, 张启瑞, 等. 基于群智机理的集群防碰撞控制[J]. 航空学报, 2020, 41(S2): 724294.

    JIANG L T, WEI R X, ZHANG Q R, et al. Cluster anti-collision control based on swarm intelligence mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724294(in Chinese).
    [40] 符小卫, 张嘉平, 魏可. 基于联盟的无人机集群避障方法[J]. 无人系统技术, 2021, 4(3): 11-17.

    FU X W, ZHANG J P, WEI K. Obstacle avoidance method for UAV swarm based on alliance[J]. Unmanned Systems Technology, 2021, 4(3): 11-17(in Chinese).
    [41] 魏瑞轩, 倪天, 赵晓林, 等. 认知无人机-环境系统的防碰撞稳定性[J]. 控制理论与应用, 2019, 36(9): 1453-1460.

    WEI R X, NI T, ZHAO X L, et al. Collision avoidance stability of the cognitive unmanned aerial vehicle & environment system[J]. Control Theory & Applications, 2019, 36(9): 1453-1460(in Chinese).
    [42] 曹瑞, 刘燕斌, 沈海东, 等. 基于鸽群搜索策略的代理模型结构优化方法[J]. 中国科学(技术科学), 2020, 50(12): 1612-1624. doi: 10.1360/SST-2019-0277

    CAO R, LIU Y B, SHEN H D, et al. Optimization algorithm of the surrogate model structure based on pigeon swarm search strategy[J]. Scientia Sinica (Technologica), 2020, 50(12): 1612-1624(in Chinese). doi: 10.1360/SST-2019-0277
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  927
  • HTML全文浏览量:  116
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 录用日期:  2022-06-10
  • 网络出版日期:  2022-08-16
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答