留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型立式轻工业建筑结构抗震性能实例研究

吴斌 杨悦 姚仰平 王凇晗 姜雪薇 许立言

吴斌,杨悦,姚仰平,等. 典型立式轻工业建筑结构抗震性能实例研究[J]. 北京航空航天大学学报,2024,50(4):1240-1250 doi: 10.13700/j.bh.1001-5965.2022.0405
引用本文: 吴斌,杨悦,姚仰平,等. 典型立式轻工业建筑结构抗震性能实例研究[J]. 北京航空航天大学学报,2024,50(4):1240-1250 doi: 10.13700/j.bh.1001-5965.2022.0405
WU B,YANG Y,YAO Y P,et al. Case study on seismic behavior of typical multistory light industrial building structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1240-1250 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0405
Citation: WU B,YANG Y,YAO Y P,et al. Case study on seismic behavior of typical multistory light industrial building structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1240-1250 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0405

典型立式轻工业建筑结构抗震性能实例研究

doi: 10.13700/j.bh.1001-5965.2022.0405
基金项目: 国家重点研发计划(2018YFC0705700); 国家自然科学基金(51878018,51878379);博士科研启动金(DC2300001260)
详细信息
    通讯作者:

    E-mail:xuliyan@buaa.edu.cn

  • 中图分类号: TU31;TU32;TU37

Case study on seismic behavior of typical multistory light industrial building structures

Funds: National Key R & D Program of China (2018YFC0705700); National Natural Science Foundation of China (51878018,51878379); Doctoral Research Startup Fund (DC2300001260)
More Information
  • 摘要:

    立式轻工业建筑结构存在大跨度、高空重载及竖向质量分布不均匀等特点,为研究该结构形式的振动响应特征,以某典型立式轻工业生产车间为背景,建立了精细化三维非线性计算模型,通过有限元仿真技术对该结构形式开展抗震性能研究。结果表明:通过合理设计,立式轻工业建筑结构能满足结构抗震设计要求,结构损伤呈由外及里的发展过程,塑性铰分布规律表现为高层多,低层少,重载层多,非重载层少的特点,在抗震设计过程中,应将重载楼层视为薄弱层予以加固,对外侧抗风柱应设置水平及垂直支撑,以延缓内部承载构件的损伤破坏,提高结构的整体抗震性能。此外,当结构存在大质量比可变荷载时,应该考虑其质量变化对结构动力特性的影响;当设备质量占比较小时,可忽略设备与结构之间的相互作用,抗震分析时可采用设备-结构固结模型进行简化计算。

     

  • 图 1  某立式轻工业生产车间三维结构

    Figure 1.  Three-dimension graph of a multistory light industrial production workshop

    图 2  某立式轻工业生产车间首层平面柱网

    Figure 2.  Planar column grid diagram of first floor of a multistory light industry production workshop

    图 3  第1、3层顶部楼板主要荷载分布

    Figure 3.  Major load distribution on top slab of 1 and 3 floors

    图 4  结构前4阶振型

    Figure 4.  First four vibration modes of structure

    图 5  轻工业生产车间反应谱曲线对比

    Figure 5.  Comparison of response spectrum curves for light industry production workshops

    图 6  轻工业生产车间地震下顶点A处位移时程曲线

    Figure 6.  Displacement response curves at point A in light industrial workshop under earthquake

    图 7  生产车间顶点A、B处位移时程曲线对比

    Figure 7.  Displacement response curves at points A and B in light industrial workshop

    图 8  轻工业生产车间最大层间位移角

    Figure 8.  Maximum inter-story drift in light industrial workshop

    图 9  轻工业生产车间在El波下第4层塑性铰分布

    Figure 9.  Plastic hinge distribution on the 4th floor under earthquake effects of El wave

    图 10  3种地震波罕遇地震作用下顶点A处位移时程曲线对比

    Figure 10.  Comparison of displacement response curves at point A under rare earthquake effects of 3 seismic waves

    图 11  El波形罕遇地震作用下结构塑性铰分布对比

    Figure 11.  Comparison of plastic hinge distribution in structures under rare earthquak effects with El wave

    图 12  3种波作用下轻工业生产车间最大层间位移角

    Figure 12.  Maximus inter-story drift in light industrial workshop under 3 seismic waves

    图 13  设备与结构的计算模型

    Figure 13.  Computational model of equipment and structure

    图 14  设备-结构固结模型与设备-结构弹簧模型振型对比

    Figure 14.  Comparison of modal analysis between equipment-structure fixed model and spring model

    图 15  罕遇地震作用下顶点Ay方向的位移响应对比

    Figure 15.  Comparison of displacement response in y direction at point A under rare seismic excitation

    图 16  设备-结构相互作用的最大层间位移角包络图

    Figure 16.  Envelop diagram of maximum inter-story drift due to equipment-structure interaction

    图 17  罕遇地震作用下某处与设备相连梁的塑性铰分布

    Figure 17.  Distribution of plastic hinges in beams connected to equipment under rare seismic excitation

    表  1  各层顶部楼板主要荷载分布

    Table  1.   Primary load distribution on top floors of each level

    楼层 设备荷载/(kN·m−2) 生产资料等可变荷载/(kN·m−2)
    设备区1 设备区2 设备区3 其他 设备区1 设备区2 设备区3 其他
    1 30 25 20 15 3 3 3 3
    2 10 5
    3 25 20 15 3 3 3
    4 10 3
    下载: 导出CSV

    表  2  生产线及电力厂房自振周期

    Table  2.   Natural period of vibration for production line and power plant

    振型 自振周期/s 圆频率/Hz 振型 自振周期/s 圆频率/Hz
    1阶 0.898 1.113 6 5阶 0.521 1.919 4
    2阶 0.893 1.119 8 6阶 0.521 1.921 2
    3阶 0.843 1.186 2 7阶 0.499 2.003 3
    4阶 0.551 1.814 9 8阶 0.485 2.061 9
    下载: 导出CSV

    表  3  不同工况下结构最大响应

    Table  3.   Maximum structural responses under various operating conditions

    工况 最大顶层
    位移/mm
    最大层间
    位移/mm
    1/最大层间
    位移角
    1/最大顶层
    位角
    1/规范最大层间
    位移角[23]
    是否满足
    规范要求[23]
    薄弱
    楼层
    Taft波(多遇地震) 12.09 5.78 2 684 3 674 800 2
    El波(多遇地震) 12.13 5.79 2 675 3 663 800 2
    人工波(多遇地震) 9.74 4.44 3 490 4 562 800 2
    Taft波(罕遇地震) 57.42 30.88 516 774 50 4
    El波(罕遇地震) 85.25 41.36 385 521 50 4
    人工波(罕遇地震) 177.64 87.75 182 250 50 4
    下载: 导出CSV

    表  4  罕遇地震作用下结构各层塑性铰数量

    Table  4.   Number of plastic hinges at each level of structure under severe earthquake

    地震波 1层 2层 3层 4层 总数
    Taft波 0 0 1 0 0 0 259 396 656
    El波 0 0 23 0 10 0 187 451 671
    人工波 10 0 71 0 84 0 203 173 541
    下载: 导出CSV

    表  5  设备-结构固结模型与设备-结构弹簧模型频率、周期对比

    Table  5.   Comparison of frequency and period between equipment-structure fixed model and spring model

    振型 频率/Hz 周期/s
    设备-结构
    固结模型
    设备-结构
    弹簧模型
    设备-结构
    固结模型
    设备-结构
    弹簧模型
    1阶 1.113 6 1.113 3 0.898 0.898
    2阶 1.119 8 1.119 5 0.893 0.983
    3阶 1.186 2 1.185 3 0.843 0.844
    4阶 1.814 9 1.814 7 0.551 0.551
    5阶 1.919 4 1.918 5 0.521 0.521
    6阶 1.921 2 1.919 0 0.521 0.521
    7阶 2.003 3 2.002 9 0.499 0.499
    8阶 2.061 9 2.061 2 0.485 0.485
    下载: 导出CSV

    表  6  罕遇地震作用下结构各层塑性铰数量

    Table  6.   Number of plastic hinges at each level of structure under severe earthquake

    地震波 1层 2层 3层 4层 总数
    Taft波 0 0 1 0 0 0 245 396 642
    El波 0 0 22 0 8 0 196 444 670
    人工波 10 0 71 0 76 0 209 183 549
    下载: 导出CSV
  • [1] 金仁超. 多层排架结构工业厂房在罕遇地震作用下的弹塑性反应分析 [D]. 南京: 南京理工大学, 2009.

    JIN R C. Elasto-plastic response analysis of multi-storey bent industrial workshop under rare earthquake[D]. Nanjing: Nanjing University of Science and Technology, 2009 (in Chinese).
    [2] 李智, 丁然, 聂鑫, 等. 标准化立式工业建筑楼面活荷载取值[J]. 建筑结构学报, 2023, 44(3): 268-278.

    LI Z, DING R, NIE X, et al. Determination of floor live loads on standardized multistory industrial buildings[J]. Journal of Building Structures, 2023, 44(3): 268-278 (in Chinese).
    [3] 王焕定, 王伟. 单层厂房弹塑性地震反应分析[J]. 哈尔滨建筑工程学院学报, 1986(2): 86-103.

    WANG H D, WANG W. Analysis of the elasto-plastic seismic response of single-story mill buildings to ground motion[J]. Journal of Harbin University of Civil Engineering and Architecture, 1986(2): 86-103 (in Chinese).
    [4] 梁碧云. 新型多层框排架结构工业厂房的耗能减震研究[D]. 南京: 南京理工大学, 2012.

    LIANG B Y. Study on energy consumption and shock absorption of new multi-storey frame-bent industrial workshop[D]. Nanjing: Nanjing University of Science and Technology, 2012 (in Chinese).
    [5] 王跃. 多层厂房结构体系的发展概况[J]. 工业建筑, 1993, 23(8): 3-6. doi: 10.3321/j.issn:1000-8993.1993.08.001

    WANG Y. Developmental general situation of multistory factory structure system[J]. Industrial Construction, 1993, 23(8): 3-6 (in Chinese). doi: 10.3321/j.issn:1000-8993.1993.08.001
    [6] 华建坤. 单跨多层大跨度工业建筑结构体系对比分析研究 [D]. 贵阳: 贵州大学, 2016.

    HUA J K. Comparative analysis and research on single-span multi-storey long-span industrial building structure system[D]. Guiyang: Guizhou University, 2016 (in Chinese).
    [7] 全明研. 钢筋混凝土多层工业厂房的可靠性鉴定[J]. 工业建筑, 1993, 23(9): 31-34. doi: 10.3321/j.issn:1000-8993.1993.09.009

    QUAN M Y. Reliability appraisement of the reinforced concrete multistore industrial building[J]. Industrial Construction, 1993, 23(9): 31-34 (in Chinese). doi: 10.3321/j.issn:1000-8993.1993.09.009
    [8] MEDHEKAR M S, KENNEDY D J L. Displacement-based seismic design of buildings-theory[J]. Engineering Structures, 2000, 22(3): 201-209. doi: 10.1016/S0141-0296(98)00092-3
    [9] PRIESTLEY M J N, KOWALSKY M J. Direct displacement-based seismic design of concrete buildings[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(4): 421-444. doi: 10.5459/bnzsee.33.4.421-444
    [10] DE ANGELIS M, PERNO S, REGGIO A. Dynamic response and optimal design of structures with large mass ratio TMD[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(1): 41-60. doi: 10.1002/eqe.1117
    [11] PAN D G, CHEN G D, WANG Z C. Suboptimal Rayleigh damping coefficients in seismic analysis of viscously-damped structures[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4): 653-670. doi: 10.1007/s11803-014-0270-9
    [12] DISARNO L, ELNASHAI A S, NETHERCOT D A. Seismic response of stainless steel braced frames[J]. Journal of Constructional Steel Research, 2008, 64(7/8): 914-925.
    [13] 梁希强, 万叶青, 阮兵, 等. 按建筑功能区要求确定振动控制区域划分方法的研究[J]. 建筑结构, 2020, 50(S1): 423-427.

    LIANG X Q, WAN Y Q, RUAN B, et al. Study on the method of determining the division of vibration control area according to the requirements of building functional area[J]. Building Structure, 2020, 50(S1): 423-427 (in Chinese).
    [14] CHAUDHURI S R. Simplified methods for the nonlinear seismic response evaluation of nonstructural components[D]. Irvine: University of California, 2005.
    [15] MEDINA R A, SANKARANARAYANAN R, KINGSTON K M. Floor response spectra for light components mounted on regular moment-resisting frame structures[J]. Engineering Structures, 2006, 28(14): 1927-1940. doi: 10.1016/j.engstruct.2006.03.022
    [16] CHAUDHURI S R, VILLAVERDE R. Effect of building nonlinearity on seismic response of nonstructural components: a parametric study[J]. Journal of Structural Engineering, 2008, 134(4): 661-670. doi: 10.1061/(ASCE)0733-9445(2008)134:4(661)
    [17] 韩淼, 王亮. 二次结构系统抗震研究的发展综述及展望[J]. 北京建筑工程学院学报, 2002, 18(2): 30-34.

    HAN M, WANG L. Review and expectation of the development of the seismic study on the primary-secondary systems[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2002, 18(2): 30-34 (in Chinese).
    [18] 国巍, 李宏男. 多维地震作用下偏心结构楼板谱分析[J]. 工程力学, 2008, 25(7): 125-132.

    GUO W, LI H N. Floor response spectrum of eccentric structure to two-dimensional earthquake[J]. Engineering Mechanics, 2008, 25(7): 125-132 (in Chinese).
    [19] 常献辉. 剪力墙结构工业厂房的抗震性能研究[D]. 天津: 天津大学, 2012.

    CHANG X H. Study on seismic performance of industrial workshop with shear wall structure[D]. Tianjin: Tianjin University, 2012 (in Chinese).
    [20] 聂建国, 陶慕轩. 采用纤维梁单元分析钢-混凝土组合结构地震反应的原理[J]. 建筑结构学报, 2011, 32(10): 1-10.

    NIE J G, TAO M X. Theory of seismic response analysis of steel-concrete composite structures using fiber beam elements[J]. Journal of Building Structures, 2011, 32(10): 1-10 (in Chinese).
    [21] 刘大海, 杨翠如, 钟锡根. 多层厂房差异平移—扭转耦联振动的地震反应分析[J]. 土木工程学报, 1983, 16(4): 53-66.

    LIU D H, YANG C R, ZHONG X G. A differential translation-torsion coupling earthquake response analysis for multi-story factory buildings[J]. Journal of Civil Engineering, 1983, 16(4): 53-66 (in Chinese).
    [22] 邹胜斌. 工业建筑多层钢筋混凝土抗震框架的非线性动力反应研究 [D]. 重庆: 重庆大学, 2001.

    ZOU S B. Study on nonlinear dynamic response of multi-storey reinforced concrete seismic frame in industrial buildings[D]. Chongqing: Chongqing University, 2001 (in Chinese).
    [23] 中华人民共和国住房和城乡建设部, 国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings: GB 50011—2010 [S]. Beijing: China Architecture & Building Press, 2010 (in Chinese).
    [24] 丁然, 陶慕轩, 周萌, 等. 考虑楼板大开洞及大质量比附属设施的结构抗震性能实例研究[J]. 工程力学, 2016, 33(3): 65-76.

    DING R, TAO M X, ZHOU M, et al. Case study on structural seismic behavior considering large slab openings and auxiliary facilities with large mass ratios[J]. Engineering Mechanics, 2016, 33(3): 65-76 (in Chinese).
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-21
  • 录用日期:  2022-06-05
  • 网络出版日期:  2022-06-22
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答