-
摘要:
根据短距起飞垂直降落(STOVL)飞行器的特点,结合AGARD 577飞行品质规范,从操纵效能和模态特性两方面对短距起飞垂直降落飞行器在飞行品质方面提出要求。基于短距起飞垂直降落飞行器六自由度模型仿真,对飞行器在短距起降过渡状态下的操纵效能进行评估。以等效系统拟配思想,采用遗传算法与最小二乘法的混合算法,对带
L 1自适应控制器的高阶飞行器模型进行低阶等效拟配。采用该低阶模型,对飞行器在不同飞行阶段下纵向与横航向的模态特性进行评估。结果表明,该飞行器在短距起降阶段具备一级飞行品质。Abstract:Based on the characteristics of short take-off and vertical landing (STOVL) aircraft, the flight quality requirements of STOVL aircraft are proposed in light of control efficiency and modal characteristics, combined with the AGARD 577 flight quality specification. The control efficiency of the vehicle in the transition state of STOVL is evaluated based on the STOVL 6-DOF model simulation. Drawing on the concept of equivalent system matching, the hybrid algorithm of the genetic algorithm and least square method is used to carry out low order equivalent matching of high order aircraft model with
L 1 adaptive controller. Using this low order model, the modal characteristics of the vehicle in longitudinal and lateral directions are evaluated. The evaluation demonstrates the first-class flight quality of the aircraft in STOVL . -
表 1 过渡状态下俯仰控制效能要求
Table 1. Pitch control efficiency requirements in transition state
飞行品质 $\theta (1)/(^\circ )$ ${\ddot \theta _{\max }}/({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}})$ 一级 2~4 0.05~0.20 表 2 过渡状态下滚转控制效能要求
Table 2. Roll control efficiency requirements in transition state
飞行品质 $\phi (1)/(^\circ )$ ${\ddot \phi _{\max }}/({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}})$ 一级 2~4 0.05~0.20 表 3 过渡状态下偏航控制效能要求
Table 3. Yaw control efficiency requirements in transition state
飞行品质 ${t_{\psi = 15^\circ }}/{\mathrm{s}}$ ${\ddot \psi _{\max }}/({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}})$ 一级 2.0 0.15~0.25 表 4 F35B缩比模型机总体参数
Table 4. Overall parameters of F35B scale prototype
参数 数值 展长$b/{\mathrm{m}}$ 1.528 8 平均气动弦长$\bar c/{\mathrm{m}}$ 0.635 机翼面积$S/{{\mathrm{m}}^2}$ 0.871 5 质量$m/{\mathrm{kg}}$ 13 转动惯量${I_{xx}}/({\mathrm{kg}} \cdot {{\mathrm{m}}^2})$ 0.407 2 转动惯量${I_{yy}}/({\mathrm{kg}} \cdot {{\mathrm{m}}^2})$ 1.054 8 转动惯量${I_{{\textit{z}}{\textit{z}}}}/({\mathrm{kg}} \cdot {{\mathrm{m}}^2})$ 1.183 89 表 5 滚转通道控制效能
Table 5. Control efficiency of roll channel
滚转角改变量/(°) 速度/(m·s−1) 9.4 15 9.3 17 8.9 19 8.6 21 8.5 23 8.5 25 表 6 俯仰通道控制效能
Table 6. Control efficiency of pitch channel
俯仰角改变量/(°) 速度/(m·s−1) 8.5 15 8.4 17 7.4 19 6.3 21 5.5 23 5 25 表 7 偏航通道控制效能
Table 7. Control efficiency of yaw channel
偏航角改变15°所需时间/s 速度/( m·s−1) 1.52 15 1.5 17 1.54 19 1.58 21 1.6 23 1.61 25 表 8 遗传算法的控制参数
Table 8. Control parameters of genetic algorithm
参数 数值 群体大小$l$ 400 编码长度$e$ 13 优秀个体数目$s$ 12 交叉概率${p_{\mathrm{c}}}$ 0.7 变异概率${p_{\mathrm{m}}}$ 0.3 表 9 原系统的纵向短周期模态特性
Table 9. Longitudinal short period modal characteristics of original system
速度/(m·s−1) 阻尼比 频率/${{\mathrm{s}}^{ - 1}}$ 特征根 15 0.5376 2.2040 −1.18±1.86i 17 0.4257 1.9512 −0.83±1.77i 19 0.3423 1.8926 −0.65±1.78i 21 0.8711 2.5554 −2.23±1.26i 23 0.6625 2.2891 −1.52±1.71i 25 0.8397 2.7412 −2.3±1.49i 表 10 原系统的横航向模态特性
Table 10. Lateral modal characteristics of original system
速度/(m·s−1) 荷兰滚模态阻尼比 荷兰滚模态频率/(rad·s−1) 荷兰滚模态特征根 滚转模态时间常数/s 螺旋模态时间常数/s 15 0.760 3 10.422 7.932 8±6.769 8i 0.464 3 3.162 5 17 0.674 3 9.105 5 6.139 8±6.724 0i 0.431 7 0.968 7 19 0.649 1 9.975 3 6.475 0±7.588 2i 0.410 8 0.523 3 21 0.649 5 10.541 1 −6.846 4±8.015 1i 0.528 9 1.976 8 23 0.936 9 11.022 2 −10.326 7±3.853 3i 0.369 3 2.299 5 25 0.828 7 9.991 2 8.279 7±5.592 0i 0.304 7 4.238 3 -
[1] 王健, 郭锁凤. 先进的短距起飞垂直着陆技术发展综述[J]. 航空科学技术, 1999, 10(2): 24-26.WANG J, GUO S F. Developing status of ASTOVL technology[J]. Aeronautical Science and Technology, 1999, 10(2): 24-26(in Chinese). [2] AGARD. V/STOL handling qualities criteria[S]. Cambridge: NATO Science and Technology Organization, 1970. [3] HOGGARTH R, MANGE R. Highlights of the Lockheed Martin F-35 STOVL jet effects programme[J]. The Aeronautical Journal, 2009, 113(1140): 119-127. doi: 10.1017/S0001924000002864 [4] MARTINEZ F. Performance mapping of a thrust augmenting ejector in transition for short take-off and vertical landing aircraft[J]. Journal of Aircraft, 2013, 45(2): 431-442. [5] 陈坤, 史志伟, 陈永亮. 短距起飞垂直降落飞行器飞行品质研究[J]. 飞行力学, 2015, 33(3): 196-200.CHEN K, SHI Z W, CHEN Y L. Research of STOVL aircraft flying qualities[J]. Flight Dynamics, 2015, 33(3): 196-200(in Chinese). [6] US Department of Defense. Flying qualities of piloted V/STOL aircraft: MIL-F-83300[S]. Washington, D. C.:US Department of Defense, 1970. [7] 刘亮, 唐勇, 陶呈纲, 等. 基于控制分配的推力矢量短距起飞垂直降落飞机减速过渡控制[J]. 哈尔滨工程大学学报, 2022, 43(6): 832-841.LIU L, TANG Y, TAO C G, et al. Deceleration transition controller design of thrust-vectored short take-off and vertical landing aircraft based on control allocation[J]. Journal of Harbin Engineering University, 2022, 43(6): 832-841(in Chinese). [8] 周涛, 王子安, 龚正, 等. 推力矢量型V/STOL飞行器动态过渡过程的操纵策略优化[J]. 航空动力学报, 2023, 38(2): 408-419.ZHOU T, WANG Z A, GONG Z, et al. Control strategy optimization of dynamic conversion procedure of thrust-vectored V/STOL aircraft[J]. Journal of Aerospace Power, 2023, 38(2): 408-419(in Chinese). [9] 王子安, 龚正, 陈永亮, 等. 复合翼无人机加速段纵向飞行特性分析与控制设计[J]. 航空动力学报, 2019, 34(10): 2177-2190.WANG Z A, GONG Z, CHEN Y L, et al. Longitudinal flight characteristics analysis and control design for hybrid VTOL UAV in accelerative transition[J]. Journal of Aerospace Power, 2019, 34(10): 2177-2190(in Chinese). [10] 孟捷, 徐浩军, 葛志浩. 等效系统参数辨识法在飞行品质评价中的应用[J]﹒数学的实践与认识, 2008, 38(8) : 79-84.MENG J, XU H J, GE Z H. Parameters identification for equivalent system and its application in evaluation of flying quality[J]. Mathematics In Practice And Theory, 2008, 38(8): 79-84(in Chinese). [11] 齐万涛, 吕新波, 武虎子. 基于时域数据的两种低阶等效拟配方法研究[J]. 科技和产业, 2021, 21(1): 167-170.QI W T, LV X B, WU H Z, Study on the two kinds of matching methods of low order equivalent system based on time-domain data[J]. Science Technology and Industry, 2021, 21(1): 167-170(in Chinese). [12] 王小龙, 徐浩军, 裴彬彬, 等. 纵向短周期飞行品质评估时域分析方法[J]. 飞行力学, 2015, 33(1): 1-4.WANG X L, XU H J, PEI B B, et al. Time-domain analysis method for evaluation of longitudinal short period flying quality[J]. Flight Dynamics, 2015, 33(1): 1-4(in Chinese). [13] 李雅静, 宋攀, 焦岗. 某型运输机纵向等效拟配的问题及分析[J]. 计算机测量与控制, 2016, 24(9): 270-273.LI Y J, SONG P, JIAO G. Problems and analysis of pitch axis equivalent matching for transporter[J]. Computer Measurement & Control, 2016, 24(9): 270-273(in Chinese). [14] KAMALI C, ARCHANA H, VIJEESH T, et al. Real-time desktop flying qualities evaluation simulator[J]. Defence Science Journal, 2014, 64(1): 27-32. doi: 10.14429/dsj.64.4961 [15] 杨俊, 张永, 肖艳平. 最小二乘法在飞机飞行品质评价中的应用[J]. 民航学报, 2018, 2(2): 30-33.YANG J, ZHANG Y, XIAO Y P. The application of least square method in aircraft flight quality evaluation[J]. Journal of Civil Aviation, 2018, 2(2): 30-33(in Chinese). [16] 陈桂孙, 方振平. 俯仰轴飞行品质中等效系统准则的计算与模拟[J]. 飞行力学, 2003, 21(1): 16-20.CHEN G S, FANG Z P. Calculation and simulation of equivalent systems criteria for flying qualities of pitch axis[J]. Flight Dynamics, 2003, 21(1): 16-20(in Chinese). [17] 王水英, 黄俊. 基于MatLab的俯仰轴等效系统拟配及飞行品质评价[J]. 飞机设计, 2009, 29(5): 32-36. doi: 10.3969/j.issn.1673-4599.2009.05.009WANG S Y, HUANG J. Pitch axis equal system match and flying quality evaluation based on MatLab[J]. Aircraft Design, 2009, 29(5): 32-36(in Chinese). doi: 10.3969/j.issn.1673-4599.2009.05.009 [18] 艾剑良, 邓建华, 李勇. 时域极大似然法在某主控飞机等效横航向飞行品质辨识中的应用[J]﹒西北工业大学学报, 1995, 13(1): 46-51.AI J L, DENG J H, LI Y. Time-domain maximum likelihood method and its application in the identification of aircraft flying quality parameters[J]. Journal of Northwestern Polytechnical University, 1995, 13(1): 46-51(in Chinese). [19] 杨蔷薇, 张翔伦. 遗传算法在等效系统拟配中的应用[J]﹒飞行力学, 2005, 23(3): 45-47.YANG Q W, ZHANG X L. Genetic algorithm for analog-matching of equivalent system[J]. Flight Dynamics, 2005, 23(3): 45-47(in Chinese). [20] 周林, 杨钊, 李杰. 基于Matlab的时域低阶等效系统的实现方法[J]. 飞行力学, 2017, 35(6): 11-15. doi: 10.3969/j.issn.1002-0853.2017.06.003ZHOU L, YANG Z, LI J. Implementation method of time-domain low order equivalent system based on Matlab[J]. Flight Dynamics, 2017, 35(6): 11-15(in Chinese). doi: 10.3969/j.issn.1002-0853.2017.06.003