留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短距起飞垂直降落飞行器飞行品质研究

甄旭东 王子安 胡润昌 龚正 陈永亮 王江峰

甄旭东,王子安,胡润昌,等. 短距起飞垂直降落飞行器飞行品质研究[J]. 北京航空航天大学学报,2024,50(5):1576-1585 doi: 10.13700/j.bh.1001-5965.2022.0413
引用本文: 甄旭东,王子安,胡润昌,等. 短距起飞垂直降落飞行器飞行品质研究[J]. 北京航空航天大学学报,2024,50(5):1576-1585 doi: 10.13700/j.bh.1001-5965.2022.0413
ZHEN X D,WANG Z A,HU R C,et al. Aircraft flight qualities of short take-off and vertical landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1576-1585 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0413
Citation: ZHEN X D,WANG Z A,HU R C,et al. Aircraft flight qualities of short take-off and vertical landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1576-1585 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0413

短距起飞垂直降落飞行器飞行品质研究

doi: 10.13700/j.bh.1001-5965.2022.0413
基金项目: 国家自然科学基金(11402115)
详细信息
    通讯作者:

    E-mail:chenyl79@nuaa.edu.cn

  • 中图分类号: V249;TB553

Aircraft flight qualities of short take-off and vertical landing

Funds: National Natural Science Foundation of China (11402115)
More Information
  • 摘要:

    根据短距起飞垂直降落(STOVL)飞行器的特点,结合AGARD 577飞行品质规范,从操纵效能和模态特性两方面对短距起飞垂直降落飞行器在飞行品质方面提出要求。基于短距起飞垂直降落飞行器六自由度模型仿真,对飞行器在短距起降过渡状态下的操纵效能进行评估。以等效系统拟配思想,采用遗传算法与最小二乘法的混合算法,对带L1自适应控制器的高阶飞行器模型进行低阶等效拟配。采用该低阶模型,对飞行器在不同飞行阶段下纵向与横航向的模态特性进行评估。结果表明,该飞行器在短距起降阶段具备一级飞行品质。

     

  • 图 1  控制效能评估图

    Figure 1.  Control effectiveness evaluation chart

    图 2  STOVL过程特征根评估

    Figure 2.  Characteristic root evaluation diagram of STOL process

    图 3  F35B缩比模型机

    Figure 3.  F35B scale model machine

    图 4  控制分配示意图

    Figure 4.  Schematic diagram of control distribution

    图 5  俯仰姿态控制框架

    Figure 5.  Pitch attitude control frame

    图 6  基于混合算法的纵向时域响应拟配对比

    Figure 6.  Longitudinal time domain response fitting comparison based on hybrid algorithm

    图 7  基于最小二乘法的纵向时域响应拟配对比

    Figure 7.  Longitudinal time-domain response fitting comparison based on least squares method

    图 8  纵向拟配进化过程

    Figure 8.  Vertical matching evolutionary process

    图 9  拟配参数对比

    Figure 9.  Comparison of matching parameters

    图 10  短周期飞行品质图

    Figure 10.  Short period flight quality chart

    图 11  基于混合算法的横行向时域响应拟配对比

    Figure 11.  Transverse heading time-domain response fitting comparison based on hybrid algroithm

    图 12  横航向拟配进化过程

    Figure 12.  Transverse heading matching evolutionary process

    图 13  横航向飞行品质图

    Figure 13.  Lateral fight quality chart

    表  1  过渡状态下俯仰控制效能要求

    Table  1.   Pitch control efficiency requirements in transition state

    飞行品质 $\theta (1)/(^\circ )$ ${\ddot \theta _{\max }}/({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}})$
    一级 2~4 0.05~0.20
    下载: 导出CSV

    表  2  过渡状态下滚转控制效能要求

    Table  2.   Roll control efficiency requirements in transition state

    飞行品质 $\phi (1)/(^\circ )$ ${\ddot \phi _{\max }}/({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}})$
    一级 2~4 0.05~0.20
    下载: 导出CSV

    表  3  过渡状态下偏航控制效能要求

    Table  3.   Yaw control efficiency requirements in transition state

    飞行品质 ${t_{\psi = 15^\circ }}/{\mathrm{s}}$ ${\ddot \psi _{\max }}/({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}})$
    一级 2.0 0.15~0.25
    下载: 导出CSV

    表  4  F35B缩比模型机总体参数

    Table  4.   Overall parameters of F35B scale prototype

    参数 数值
    展长$b/{\mathrm{m}}$ 1.528 8
    平均气动弦长$\bar c/{\mathrm{m}}$ 0.635
    机翼面积$S/{{\mathrm{m}}^2}$ 0.871 5
    质量$m/{\mathrm{kg}}$ 13
    转动惯量${I_{xx}}/({\mathrm{kg}} \cdot {{\mathrm{m}}^2})$ 0.407 2
    转动惯量${I_{yy}}/({\mathrm{kg}} \cdot {{\mathrm{m}}^2})$ 1.054 8
    转动惯量${I_{{\textit{z}}{\textit{z}}}}/({\mathrm{kg}} \cdot {{\mathrm{m}}^2})$ 1.183 89
    下载: 导出CSV

    表  5  滚转通道控制效能

    Table  5.   Control efficiency of roll channel

    滚转角改变量/(°) 速度/(m·s−1)
    9.4 15
    9.3 17
    8.9 19
    8.6 21
    8.5 23
    8.5 25
    下载: 导出CSV

    表  6  俯仰通道控制效能

    Table  6.   Control efficiency of pitch channel

    俯仰角改变量/(°) 速度/(m·s−1)
    8.5 15
    8.4 17
    7.4 19
    6.3 21
    5.5 23
    5 25
    下载: 导出CSV

    表  7  偏航通道控制效能

    Table  7.   Control efficiency of yaw channel

    偏航角改变15°所需时间/s 速度/( m·s−1)
    1.52 15
    1.5 17
    1.54 19
    1.58 21
    1.6 23
    1.61 25
    下载: 导出CSV

    表  8  遗传算法的控制参数

    Table  8.   Control parameters of genetic algorithm

    参数 数值
    群体大小$l$ 400
    编码长度$e$ 13
    优秀个体数目$s$ 12
    交叉概率${p_{\mathrm{c}}}$ 0.7
    变异概率${p_{\mathrm{m}}}$ 0.3
    下载: 导出CSV

    表  9  原系统的纵向短周期模态特性

    Table  9.   Longitudinal short period modal characteristics of original system

    速度/(m·s−1) 阻尼比 频率/${{\mathrm{s}}^{ - 1}}$ 特征根
    15 0.5376 2.2040 −1.18±1.86i
    17 0.4257 1.9512 −0.83±1.77i
    19 0.3423 1.8926 −0.65±1.78i
    21 0.8711 2.5554 −2.23±1.26i
    23 0.6625 2.2891 −1.52±1.71i
    25 0.8397 2.7412 −2.3±1.49i
    下载: 导出CSV

    表  10  原系统的横航向模态特性

    Table  10.   Lateral modal characteristics of original system

    速度/(m·s−1) 荷兰滚模态阻尼比 荷兰滚模态频率/(rad·s−1) 荷兰滚模态特征根 滚转模态时间常数/s 螺旋模态时间常数/s
    15 0.760 3 10.422 7.932 8±6.769 8i 0.464 3 3.162 5
    17 0.674 3 9.105 5 6.139 8±6.724 0i 0.431 7 0.968 7
    19 0.649 1 9.975 3 6.475 0±7.588 2i 0.410 8 0.523 3
    21 0.649 5 10.541 1 −6.846 4±8.015 1i 0.528 9 1.976 8
    23 0.936 9 11.022 2 −10.326 7±3.853 3i 0.369 3 2.299 5
    25 0.828 7 9.991 2 8.279 7±5.592 0i 0.304 7 4.238 3
    下载: 导出CSV
  • [1] 王健, 郭锁凤. 先进的短距起飞垂直着陆技术发展综述[J]. 航空科学技术, 1999, 10(2): 24-26.

    WANG J, GUO S F. Developing status of ASTOVL technology[J]. Aeronautical Science and Technology, 1999, 10(2): 24-26(in Chinese).
    [2] AGARD. V/STOL handling qualities criteria[S]. Cambridge: NATO Science and Technology Organization, 1970.
    [3] HOGGARTH R, MANGE R. Highlights of the Lockheed Martin F-35 STOVL jet effects programme[J]. The Aeronautical Journal, 2009, 113(1140): 119-127. doi: 10.1017/S0001924000002864
    [4] MARTINEZ F. Performance mapping of a thrust augmenting ejector in transition for short take-off and vertical landing aircraft[J]. Journal of Aircraft, 2013, 45(2): 431-442.
    [5] 陈坤, 史志伟, 陈永亮. 短距起飞垂直降落飞行器飞行品质研究[J]. 飞行力学, 2015, 33(3): 196-200.

    CHEN K, SHI Z W, CHEN Y L. Research of STOVL aircraft flying qualities[J]. Flight Dynamics, 2015, 33(3): 196-200(in Chinese).
    [6] US Department of Defense. Flying qualities of piloted V/STOL aircraft: MIL-F-83300[S]. Washington, D. C.:US Department of Defense, 1970.
    [7] 刘亮, 唐勇, 陶呈纲, 等. 基于控制分配的推力矢量短距起飞垂直降落飞机减速过渡控制[J]. 哈尔滨工程大学学报, 2022, 43(6): 832-841.

    LIU L, TANG Y, TAO C G, et al. Deceleration transition controller design of thrust-vectored short take-off and vertical landing aircraft based on control allocation[J]. Journal of Harbin Engineering University, 2022, 43(6): 832-841(in Chinese).
    [8] 周涛, 王子安, 龚正, 等. 推力矢量型V/STOL飞行器动态过渡过程的操纵策略优化[J]. 航空动力学报, 2023, 38(2): 408-419.

    ZHOU T, WANG Z A, GONG Z, et al. Control strategy optimization of dynamic conversion procedure of thrust-vectored V/STOL aircraft[J]. Journal of Aerospace Power, 2023, 38(2): 408-419(in Chinese).
    [9] 王子安, 龚正, 陈永亮, 等. 复合翼无人机加速段纵向飞行特性分析与控制设计[J]. 航空动力学报, 2019, 34(10): 2177-2190.

    WANG Z A, GONG Z, CHEN Y L, et al. Longitudinal flight characteristics analysis and control design for hybrid VTOL UAV in accelerative transition[J]. Journal of Aerospace Power, 2019, 34(10): 2177-2190(in Chinese).
    [10] 孟捷, 徐浩军, 葛志浩. 等效系统参数辨识法在飞行品质评价中的应用[J]﹒数学的实践与认识, 2008, 38(8) : 79-84.

    MENG J, XU H J, GE Z H. Parameters identification for equivalent system and its application in evaluation of flying quality[J]. Mathematics In Practice And Theory, 2008, 38(8): 79-84(in Chinese).
    [11] 齐万涛, 吕新波, 武虎子. 基于时域数据的两种低阶等效拟配方法研究[J]. 科技和产业, 2021, 21(1): 167-170.

    QI W T, LV X B, WU H Z, Study on the two kinds of matching methods of low order equivalent system based on time-domain data[J]. Science Technology and Industry, 2021, 21(1): 167-170(in Chinese).
    [12] 王小龙, 徐浩军, 裴彬彬, 等. 纵向短周期飞行品质评估时域分析方法[J]. 飞行力学, 2015, 33(1): 1-4.

    WANG X L, XU H J, PEI B B, et al. Time-domain analysis method for evaluation of longitudinal short period flying quality[J]. Flight Dynamics, 2015, 33(1): 1-4(in Chinese).
    [13] 李雅静, 宋攀, 焦岗. 某型运输机纵向等效拟配的问题及分析[J]. 计算机测量与控制, 2016, 24(9): 270-273.

    LI Y J, SONG P, JIAO G. Problems and analysis of pitch axis equivalent matching for transporter[J]. Computer Measurement & Control, 2016, 24(9): 270-273(in Chinese).
    [14] KAMALI C, ARCHANA H, VIJEESH T, et al. Real-time desktop flying qualities evaluation simulator[J]. Defence Science Journal, 2014, 64(1): 27-32. doi: 10.14429/dsj.64.4961
    [15] 杨俊, 张永, 肖艳平. 最小二乘法在飞机飞行品质评价中的应用[J]. 民航学报, 2018, 2(2): 30-33.

    YANG J, ZHANG Y, XIAO Y P. The application of least square method in aircraft flight quality evaluation[J]. Journal of Civil Aviation, 2018, 2(2): 30-33(in Chinese).
    [16] 陈桂孙, 方振平. 俯仰轴飞行品质中等效系统准则的计算与模拟[J]. 飞行力学, 2003, 21(1): 16-20.

    CHEN G S, FANG Z P. Calculation and simulation of equivalent systems criteria for flying qualities of pitch axis[J]. Flight Dynamics, 2003, 21(1): 16-20(in Chinese).
    [17] 王水英, 黄俊. 基于MatLab的俯仰轴等效系统拟配及飞行品质评价[J]. 飞机设计, 2009, 29(5): 32-36. doi: 10.3969/j.issn.1673-4599.2009.05.009

    WANG S Y, HUANG J. Pitch axis equal system match and flying quality evaluation based on MatLab[J]. Aircraft Design, 2009, 29(5): 32-36(in Chinese). doi: 10.3969/j.issn.1673-4599.2009.05.009
    [18] 艾剑良, 邓建华, 李勇. 时域极大似然法在某主控飞机等效横航向飞行品质辨识中的应用[J]﹒西北工业大学学报, 1995, 13(1): 46-51.

    AI J L, DENG J H, LI Y. Time-domain maximum likelihood method and its application in the identification of aircraft flying quality parameters[J]. Journal of Northwestern Polytechnical University, 1995, 13(1): 46-51(in Chinese).
    [19] 杨蔷薇, 张翔伦. 遗传算法在等效系统拟配中的应用[J]﹒飞行力学, 2005, 23(3): 45-47.

    YANG Q W, ZHANG X L. Genetic algorithm for analog-matching of equivalent system[J]. Flight Dynamics, 2005, 23(3): 45-47(in Chinese).
    [20] 周林, 杨钊, 李杰. 基于Matlab的时域低阶等效系统的实现方法[J]. 飞行力学, 2017, 35(6): 11-15. doi: 10.3969/j.issn.1002-0853.2017.06.003

    ZHOU L, YANG Z, LI J. Implementation method of time-domain low order equivalent system based on Matlab[J]. Flight Dynamics, 2017, 35(6): 11-15(in Chinese). doi: 10.3969/j.issn.1002-0853.2017.06.003
  • 加载中
图(13) / 表(10)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  75
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 录用日期:  2022-06-25
  • 网络出版日期:  2022-09-14
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答