留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RP-3航油火焰三维温度场和碳烟浓度场测量

左冰娴 周宾 戴明露

左冰娴,周宾,戴明露. RP-3航油火焰三维温度场和碳烟浓度场测量[J]. 北京航空航天大学学报,2024,50(4):1273-1281 doi: 10.13700/j.bh.1001-5965.2022.0415
引用本文: 左冰娴,周宾,戴明露. RP-3航油火焰三维温度场和碳烟浓度场测量[J]. 北京航空航天大学学报,2024,50(4):1273-1281 doi: 10.13700/j.bh.1001-5965.2022.0415
ZUO B X,ZHOU B,DAI M L. Measurement of three-dimensional temperature and soot volume fraction for RP-3 jet fuel flame[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1273-1281 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0415
Citation: ZUO B X,ZHOU B,DAI M L. Measurement of three-dimensional temperature and soot volume fraction for RP-3 jet fuel flame[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1273-1281 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0415

RP-3航油火焰三维温度场和碳烟浓度场测量

doi: 10.13700/j.bh.1001-5965.2022.0415
基金项目: 国家重点研发计划(2017YFB0603204);国家自然科学基金(50976024,50906013)
详细信息
    通讯作者:

    E-mail:zhoubinde@seu.edu.cn

  • 中图分类号: V312+.1;TK311;TK314

Measurement of three-dimensional temperature and soot volume fraction for RP-3 jet fuel flame

Funds: National Key R&D Program of China (2017YFB0603204); National Natural Science Foundation of China (50976024,50906013)
More Information
  • 摘要:

    RP-3航空煤油是航空发动机的常用燃料之一,火焰温度及碳烟浓度分布作为反映燃烧状态最直接的参数,是燃料优化配比的重要数据支撑。针对三维测量中,重建路径计算的准确性受相机位姿影响的问题,提出了一种将三维辐射成像法与相机立体标定技术相结合的测量方法。数值模拟结果表明,所提方法可以在提供较高的空间分辨率的同时保证测量结果的可靠性。利用标定后的六相机测量系统,对RP-3、空气预混火焰进行了实验测量,获得了其三维温度及碳烟浓度分布。测量的空间分辨率为$1 \;{\mathrm{mm}}\times1 \;{\mathrm{mm}}\times1 \;{\mathrm{mm}} $,重建与热电偶测量温差的标准不确定度为0.58 K,证明了测量方法的精确性。

     

  • 图 1  三维辐射成像测量模型

    Figure 1.  3D radiation imaging measurement model

    图 2  测量系统示意图

    Figure 2.  Schematic diagram of measurement system

    图 3  三维温度及碳烟浓度分布

    Figure 3.  3D distribution of temperature and soot volume fraction

    图 4  相机位姿校正对重建结果的影响

    Figure 4.  Effect of camera position correction on reconstruction results

    图 5  RP-3火焰图像

    Figure 5.  Images of RP-3 flame

    图 6  重建温度及碳烟浓度分布

    Figure 6.  Temperature reconstruction and soot volume fraction distribution

    图 7  温度及碳烟浓度层重建分布趋势

    Figure 7.  Trend of reconstruction temperature and soot volume fraction for layer

    图 8  重建温度与热电偶测量温度对比

    Figure 8.  Temperature comparison between reconstruction and thermocouple

    表  1  相机位姿标定结果

    Table  1.   Camera position calibration results

    相机 平移矩阵/mm 旋转矩阵/(°)
    x y z $ \alpha $ $ \beta $ $ \theta $
    理论值 实际值 理论值 实际值 理论值 实际值 理论值 实际值 理论值 实际值 理论值 实际值
    相机1和2 113.5965 109.2632 −63.27 −63.3203 0 0.1341 0 0.5695 0 0 −60 −60.3141
    相机1和3 225.1667 221.2563 3.4641 1.0527 0 0.2493 0 −0.2929 0 0 −120 −119.0782
    相机1和4 223.1667 225.0230 133.4641 135.7647 0 0.1187 0 0.5509 0 0 −180 −181.9560
    相机1和5 109.5833 114.1136 196.7321 199.1433 0 0.0825 0 0.3721 0 0 −240 −238.9791
    相机1和6 −2.0000 −0.4152 130 128.2231 0 0.2196 0 −0.5867 0 0 −300 −300.6856
    下载: 导出CSV
  • [1] 贾洲侠, 徐国强, 邓宏武, 等. 亚临界压力下航空煤油RP-3动力黏度测量[J]. 北京航空航天大学学报, 2014, 40(7): 934-938.

    JIA Z X, XU G Q, DENG H W, et al. Dynamic viscosity measurements of aviation hydrocarbon fuel RP-3 at sub-critical pressures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 934-938(in Chinese).
    [2] GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography [J]. Combustion and Flame, 2018, 196: 284-299.
    [3] YAN W J, LOU C. Two-dimensional distributions of temperature and soot volume fraction inversed from visible flame images[J]. Experimental Thermal and Fluid Science, 2013, 50: 229-233. doi: 10.1016/j.expthermflusci.2013.05.013
    [4] YAN W J, CHEN D M, YANG Z M, et al. Measurement of soot volume fraction and temperature for oxygen-enriched ethylene combustion based on flame image processing[J]. Energies, 2017, 10(6): 750. doi: 10.3390/en10060750
    [5] WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science and Technology, 2013, 24(2): 024013. doi: 10.1088/0957-0233/24/2/024013
    [6] LU G, YAN Y, CORNWELL S, et al. Impact of co-firing coal and biomass on flame characteristics and stability[J]. Fuel, 2008, 87(7): 1133-1140. doi: 10.1016/j.fuel.2007.07.005
    [7] HOSSAIN M M, LU G, YAN Y. Optical fiber imaging based tomographic reconstruction of burner flames[J]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(5): 1417-1425. doi: 10.1109/TIM.2012.2186477
    [8] 谢正超, 王飞, 张海丹, 等. 基于可见光-近红外多光谱图像的火焰场参数重建[J]. 燃烧科学与技术, 2016, 22(6): 552-557.

    XIE Z C, WANG F, ZHANG H D, et al. Simultaneous reconstruction of three dimensional field parameters based on the visible and near-infrared multi-spectral flame images[J]. Journal of Combustion Science and Technology, 2016, 22(6): 552-557(in Chinese).
    [9] LIU H W, ZHENG S, ZHOU H C. Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyperspectral tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2): 315-324. doi: 10.1109/TIM.2016.2631798
    [10] LI M J, SUN K, HE Z. Integrated research of a multi-wavelength method in anisotropic scattering flame on soot temperature and radiative coefficient reconstruction[J]. Applied Optics, 2018, 57(21): 5899-5913.
    [11] 张海丹. 基于高光谱成像系统的火焰三维温度场和烟黑浓度场重建研究[D]. 杭州: 浙江大学, 2016: 22-23.

    ZHANG H D. Three dimensional reconstruction of temperature and soot volume fraction distribution in flames based on hyperspectral imaging system[D]. Hangzhou: Zhejiang University, 2016: 22-23(in Chinese).
    [12] SUN J, HOSSAIN M M, XU C L, et al. Investigation of flame radiation sampling and temperature measurement through light field camera[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1281-1296. doi: 10.1016/j.ijheatmasstransfer.2018.01.083
    [13] HUANG X, QI H, ZHANG X L, et al. Application of landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique[J]. Journal of Heat Transfer, 2018, 140(8): 082701. doi: 10.1115/1.4039305
    [14] 史景文, 齐宏, 孙安泰, 等. 光场相机的标定误差对三维温度场重建的影响[J]. 燃烧科学与技术, 2022, 28(2): 220-228.

    SHI J W, QI H, SUN A T, et al. Effect of calibration error of plenoptic camera on three-dimensional temperature field reconstruction[J]. Journal of Combustion Science and Technology, 2022, 28(2): 220-228(in Chinese).
    [15] KAHMEN O, ROFALLSKI R, LUHMANN T. Impact of stereo camera calibration to object accuracy in multimedia photogrammetry[J]. Remote Sensing, 2020, 12(12): 2057. doi: 10.3390/rs12122057
    [16] USAMENTIAGA R, GARCIA D F. Multi-camera calibration for accurate geometric measurements in industrial environments[J]. Measurement, 2019, 134: 345-358. doi: 10.1016/j.measurement.2018.10.087
    [17] MCENALLY C S, KÖYLÜ Ü Ö, PFEFFERLE L D, et al. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples[J]. Combustion and Flame, 1997, 109(4): 701-720. doi: 10.1016/S0010-2180(97)00054-0
    [18] FURUKAWA Y, PONCE J. Accurate camera calibration from multi-view stereo and bundle adjustment[J]. International Journal of Computer Vision, 2009, 84(3): 257-268. doi: 10.1007/s11263-009-0232-2
    [19] GENOVESE K, CHI Y X, PAN B. Stereo-camera calibration for large-scale DIC measurements with active phase targets and planar mirrors[J]. Optics Express, 2019, 27(6): 9040. doi: 10.1364/OE.27.009040
    [20] SUN M S, GAN Z W, YANG Y Y. Numerical and experimental investigation of soot precursor and primary particle size of aviation fuel (RP-3) and n-dodecane in laminar flame[J]. Journal of the Energy Institute, 2021, 94: 49-62. doi: 10.1016/j.joei.2020.10.009
    [21] ABDALLA A O G, YING Y Y, JIANG B, et al. Comparative study on characteristics of soot from n-decane and RP-3 kerosene normal/inverse diffusion flames[J]. Journal of the Energy Institute, 2020, 93(1): 62-75. doi: 10.1016/j.joei.2019.04.008
    [22] WANG X R, DAI M L, YAN J, et al. Experimental investigation on the evaporation and micro-explosion mechanism of jatropha vegetable oil (JVO) droplets[J]. Fuel, 2019, 258: 115941. doi: 10.1016/j.fuel.2019.115941
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  80
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 录用日期:  2022-07-22
  • 网络出版日期:  2022-07-28
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答