留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化布拉格结构的固态装配型谐振器

张世峰 轩伟鹏 石林豪 董树荣 浦世亮

张世峰,轩伟鹏,石林豪,等. 基于优化布拉格结构的固态装配型谐振器[J]. 北京航空航天大学学报,2024,50(2):449-455 doi: 10.13700/j.bh.1001-5965.2022.0436
引用本文: 张世峰,轩伟鹏,石林豪,等. 基于优化布拉格结构的固态装配型谐振器[J]. 北京航空航天大学学报,2024,50(2):449-455 doi: 10.13700/j.bh.1001-5965.2022.0436
ZHANG S F,XUAN W P,SHI L H,et al. Solidly mounted resonator based on optimized Bragg structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):449-455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0436
Citation: ZHANG S F,XUAN W P,SHI L H,et al. Solidly mounted resonator based on optimized Bragg structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):449-455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0436

基于优化布拉格结构的固态装配型谐振器

doi: 10.13700/j.bh.1001-5965.2022.0436
详细信息
    通讯作者:

    E-mail:pushiliang@hikvision.com

  • 中图分类号: V221+.3;TB553

Solidly mounted resonator based on optimized Bragg structure

More Information
  • 摘要:

    体声波谐振器的有效耦合系数和品质因数决定了体声波滤波器的整体性能。有效耦合系数依赖于叠层结构和压电材料。而品质因数高度依赖于损耗机制,主要为电学损耗和声学损耗。对于固态装配型谐振器(SMR),声学损耗主要为透过衬底的能量泄漏。为提高SMR的品质因数,改进了布拉格堆叠结构,使纵波和剪切波同时被约束在压电堆叠结构中,以减少声能对衬底的泄漏。同时,为抑制谐振腔的杂散模式,优化了布拉格结构顶层薄膜厚度,器件色散特性由Ⅱ型变为Ⅰ型。通过仿真和实验表明:基于优化布拉格结构的SMR性能得到了明显改善。

     

  • 图 1  传统布拉格结构纵波和剪切波传输特性

    Figure 1.  Transmission characteristics of longitudinal and shear waves of traditional Bragg structure

    图 2  优化的布拉格结构和Ⅰ型色散优化布拉格结构的纵波与剪切波传输特性

    Figure 2.  Optimized Bragg structure, and transmission characteristics of longitudinal and shear waves of optimized Bragg structure for type Ⅰ dispersion

    图 3  3种布拉格结构的SMR器件阻抗和品质因数对比

    Figure 3.  Comparison of impedance and quality factor between SMR devices of three Bragg structures

    图 4  SMR制备工艺流程

    Figure 4.  Manufacturing process of SMR

    图 5  CMP工艺对薄膜表面平整度的影响

    Figure 5.  The CMP process influence for film surface smoothness

    图 6  SMR俯视图

    Figure 6.  Top view of SMR

    图 7  基于优化布拉格结构的SMR的实测S11参数

    Figure 7.  Measured S11 parameter of SMR based on optimized Bragg structure

  • [1] PIRINEN P, PENNANEN H, POUTTU A, et al. RF driven 5G system design for centimeter waves[J]. Wireless Communications and Mobile Computing, 2018, 2018: 1-9.
    [2] PANARIELLO A, YU M, ERNST C. Ku-band high power dielectric resonator filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 382-392. doi: 10.1109/TMTT.2012.2229292
    [3] HAGELAUER A, FATTINGER G, RUPPEL C C W, et al. Microwave acoustic wave devices: Recent advances on architectures, modeling, materials, and packaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(10): 4548-4562. doi: 10.1109/TMTT.2018.2854160
    [4] VILLA-LÓPEZ F H, THOMAS S, COLE M, et al. Finite element modelling of particle sensors based on solidly mounted resonators[C]//IEEE Sensors. Piscataway: IEEE Press, 2014: 574-577.
    [5] FARINA M, ROZZI T. Electromagnetic modeling of thin-film bulk acoustic resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(11): 2496-2502.
    [6] SHEALY J B, VETURY R, GIBB S R, et al. Low loss, 3.7 GHz wideband BAW filters, using high power single crystal AIN-on-SiC resonators[C]//IEEE Mtt-S International Microwave Symposium. Piscataway: IEEE Press, 2017: 1476-1479.
    [7] FATTINGER G G, MARKSTEINER S, KAITILA J, et al. Optimization of acoustic dispersion for high performance thin film BAW resonators[C]//IEEE Ultrasonics Symposium. Piscataway: IEEE Press, 2006: 1175-1178.
    [8] THALHAMMER R, AIGNER R. Energy loss mechanisms in SMR-type BAW devices[C]//IEEE Mtt-S International Microwave Symposium Digest. Piscataway: IEEE Press, 2021: 225-228.
    [9] TANSKAYA T N, ZIMA V N, KOZLOV A G. The influence of surface roughness of Bragg reflector layers on characteristics of microwave solidly mounted resonator[C]// Proceedings of the International Siberian Conference on Control and Communications. Piscataway: IEEE Press, 2015: 1-4.
    [10] PARK H, SONG I, LEE M C, et al. Novel Bulk acoustic wave resonator structure for reducing electrical loss of electrodes[C]// Proceedings of the IEEE Mtt-S International Microwave Symposium Digest. Piscataway: IEEE Press, 2014: 1-4.
    [11] LEE S H, YOON K H, LEE J K. Influence of electrode configurations on the quality factor and piezoelectric coupling constant of solidly mounted bulk acoustic wave resonators[J]. Journal of Applied Physics, 2002, 92(7): 4062-4069. doi: 10.1063/1.1505977
    [12] KNITTL Z. Optics of thin films[M]. New York: Wiley, 1976: 66-67.
    [13] VILLA-LÓPEZ F H, RUGHOOBUR G, THOMAS S, et al. Design and modelling of solidly mounted resonators for low-cost particle sensing[J]. Measurement Science and Technology, 2016, 27(2): 025101. doi: 10.1088/0957-0233/27/2/025101
    [14] GALIPEAU J, CHANG R E. Design considerations for high power BAW duplexers for base station applications[C]// Proceedings of the IEEE International Ultrasonics Symposium. Piscataway: IEEE Press, 2015: 1-4.
    [15] KOZLOV A G. Effect of Bragg acoustic reflector on thermal processes in SMR under high power levels[C]// Proceedings of the 22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. Piscataway: IEEE Press, 2021: 1-6.
  • 加载中
图(7)
计量
  • 文章访问数:  788
  • HTML全文浏览量:  84
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-29
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-08-26
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答