-
摘要:
无人机集群系统对安全性和稳定性要求极高,实时的故障检测与诊断技术是保证安全可靠运行的有力手段。提出一种基于统计模型和改进宽度学习(BLS)模型的故障诊断方法。所提方法通过多元数据统计分析表征无人机集群系统在正常与不同故障模式下的行为特征,采用改进的BLS模型实现准确、快速的故障诊断。在此基础上,开发无人机集群系统的高逼真可视化仿真验证平台对所提方法的合理性与有效性进行验证。实验结果表明,所提方法与目前主流方法相比具有明显的诊断优势。
Abstract:The security requirements of the unmanned aerial vehicle (UAV) swarm system are extremely strict, and real-time fault detection and diagnosis is one of its important supporting technologies. This paper presents a fault diagnosis method based on statistical model and improved broad learning system (BLS) model. Firstly, the behavior characteristics of UAV swarm system under normal and different fault modes are characterized by multivariate data statistical analysis, and then the improved BLS model is used to achieve accurate and rapid fault diagnosis. On this basis, a high fidelity simulation verification platform is developed to verify the rationality and effectiveness of the proposed method. The experimental results show that the proposed method has obvious diagnostic advantages compared with the current mainstream methods.
-
Key words:
- UAV swarm /
- fault diagnosis /
- statistical model /
- broad learning system /
- simulation verification
-
表 1 4种情况下不同方法的诊断结果对比
Table 1. Diagnosis comparison of different methods under four conditions
方法 诊断准确率/% SAE 76.8 SVM 93.8 BLS 96.8 本文方法 99.2 -
[1] NAWAZ H, ALI H M, ALI LAGHARI A. UAV communication networks issues: A review[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1349-1369. doi: 10.1007/s11831-020-09418-0 [2] YU Z Q, QU Y H, ZHANG Y M. Distributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturation[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2417-2429. doi: 10.1109/TCST.2018.2868038 [3] 王莉娜, 刘贞报, 院金彪, 等. 四旋翼无人机的自适应故障诊断与估计[J]. 北京航空航天大学学报, 2023, 49(9): 2395-2405.WANG L N, LIU Z B, YUAN J B, et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2395-2405(in Chinese). [4] PARSINIA M, EL KHAMLICHI B, PENG Q D, et al. A distributed mode reassignment scheme for mobile multihop wireless network of FDD nodes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3599-3612. doi: 10.1109/TAES.2020.2979035 [5] SAIED M, LUSSIER B, FANTONI I, et al. Active versus passive fault-tolerant control of a redundant multirotor UAV[J]. The Aeronautical Journal, 2020, 124(1273): 385-408. doi: 10.1017/aer.2019.149 [6] YU Z Q, ZHANG Y M, JIANG B, et al. A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles[J]. Chinese Journal of Aeronautics, 2022, 35(1): 1-18. doi: 10.1016/j.cja.2021.04.022 [7] JUNG W, BANG H. Fault and failure tolerant model predictive control of quadrotor UAV[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(3): 663-675. doi: 10.1007/s42405-020-00331-1 [8] YU Z Q, ZHANG Y M, JIANG B, et al. Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 799-813. [9] YU Z Q, ZHANG Y M, JIANG B. PID-type fault-tolerant prescribed performance control of fixed-wing UAV[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1053-1061. doi: 10.23919/JSEE.2021.000090 [10] 陆宁云, 孟宪锋, 姜斌, 等. 基于多信号模型和盲源分离的复合故障诊断方法[J]. 控制与决策, 2016, 31(11): 1945-1952.LU N Y, MENG X F, JIANG B, et al. Compound fault diagnosis method based on multi-signal model and blind source separation[J]. Control and Decision, 2016, 31(11): 1945-1952(in Chinese). [11] HUANG J, LI M N, ZHANG Y M, et al. Fault detection and classification for sensor faults of UAV by deep learning and time-frequency analysis[C]//Proceedings of the 40th Chinese Control Conference. Piscataway: IEEE Press, 2021: 4420-4424. [12] GUO L, LI R Z, JIANG B. A cascade broad neural network for concrete structural crack damage automated classification[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2737-2742. doi: 10.1109/TII.2020.3010799 [13] CHEN H T, JIANG B, CHEN W, et al. Data-driven detection and diagnosis of incipient faults in electrical drives of high-speed trains[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4716-4725. doi: 10.1109/TIE.2018.2863191 [14] GUO L, LI R Z, JIANG B, et al. Automatic crack distress classification from concrete surface images using a novel deep-width network architecture[J]. Neurocomputing, 2020, 397: 383-392. doi: 10.1016/j.neucom.2019.08.107 [15] GUO L, LI R Z, JIANG B. An ensemble broad learning scheme for semisupervised vehicle type classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5287-5297. doi: 10.1109/TNNLS.2021.3083508 [16] WANG J, GUI G, OHTSUKI T, et al. Compressive sampled CSI feedback method based on deep learning for FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2021, 69(9): 5873-5885. doi: 10.1109/TCOMM.2021.3086525 [17] YANG Y W, GAO F F, ZHONG Z M, et al. Deep transfer learning-based downlink channel prediction for FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7485-7497. [18] 姜斌, 陈宏田, 易辉, 等. 数据驱动高速列车动态牵引系统的故障诊断[J]. 中国科学(信息科学), 2020, 50(4): 496-510. doi: 10.1360/SSI-2019-0220JIANG B, CHEN H T, YI H, et al. Data-driven fault diagnosis for dynamic traction systems in high-speed trains[J]. Scientia Sinica (Informationis), 2020, 50(4): 496-510(in Chinese). doi: 10.1360/SSI-2019-0220 [19] CHEN C L P, LIU Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24. doi: 10.1109/TNNLS.2017.2716952 [20] AMIN M T, KHAN F, AHMED S, et al. A data-driven Bayesian network learning method for process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 110-122. doi: 10.1016/j.psep.2021.04.004 [21] CHEN H T, JIANG B, LU N Y, et al. Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4819-4830. doi: 10.1109/TVT.2018.2818538 [22] WU D Y, ZHAO J S. Process topology convolutional network model for chemical process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 93-109. doi: 10.1016/j.psep.2021.03.052 [23] SHI S B, LI G N, CHEN H X, et al. An efficient VRF system fault diagnosis strategy for refrigerant charge amount based on PCA and dual neural network model[J]. Applied Thermal Engineering, 2018, 129: 1252-1262. doi: 10.1016/j.applthermaleng.2017.09.117 [24] GUO L, LI R, JIANG B. Fault detection and diagnosis using statistic feature and improved broad learning for traction systems in high-speed trains[J]. IEEE Transactions on Artificial Intelligence, 2022. [25] 李润泽, 郭黎, 李保平, 等. 基于模糊宽度学习模型的光伏发电预测方法[J]. 控制工程, 2020, 27(11): 2016-2022.LI R Z, GUO L, LI B P, et al. A photovoltaic power prediction method based on fuzzy broad learning system[J]. Control Engineering of China, 2020, 27(11): 2016-2022(in Chinese). [26] WANG S, DAI X H, KE C X, et al. RflySim: A rapid multicopter development platform for education and research based on pixhawk and MATLAB[C]//Proceedings of the International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2021: 1587-1594. [27] ZHAO X Y, HE Z X, ZHANG S Y, et al. A sparse-representation-based robust inspection system for hidden defects classification in casting components[J]. Neurocomputing, 2015, 153: 1-10. doi: 10.1016/j.neucom.2014.11.057 [28] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.