留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嫦娥五号发动机降落羽流扬尘特性研究

张海燕 李思新 王鹢 李存惠 张小平 王卫东

张海燕,李思新,王鹢,等. 嫦娥五号发动机降落羽流扬尘特性研究[J]. 北京航空航天大学学报,2024,50(4):1251-1261 doi: 10.13700/j.bh.1001-5965.2022.0447
引用本文: 张海燕,李思新,王鹢,等. 嫦娥五号发动机降落羽流扬尘特性研究[J]. 北京航空航天大学学报,2024,50(4):1251-1261 doi: 10.13700/j.bh.1001-5965.2022.0447
ZHANG H Y,LI S X,WANG Y,et al. Nozzle plume erosion property on lunar dust in Chang’E-5 mission[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1251-1261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0447
Citation: ZHANG H Y,LI S X,WANG Y,et al. Nozzle plume erosion property on lunar dust in Chang’E-5 mission[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1251-1261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0447

嫦娥五号发动机降落羽流扬尘特性研究

doi: 10.13700/j.bh.1001-5965.2022.0447
基金项目: 国家自然科学基金(42004157);空间环境材料行为及评价技术国家重点实验室基金(WDZC-HGD-2022-08);真空技术与物理国家级重点实验室基金(6142207200202);甘肃省自然科学基金(21JR7RA743);甘肃省青年人才托举工程(GXH20210611-05)
详细信息
    通讯作者:

    E-mail:wangwd@mail.xidian.edu.cn

  • 中图分类号: V411.6;V434.1

Nozzle plume erosion property on lunar dust in Chang’E-5 mission

Funds: National Natural Science Foundation of China (42004157); National Key Laboratory of Materials Behaviors and Evaluation Technoloty in Space Environments (WDZC-HGD-2022-08); National Key Laboratory of Science and Technology on Vacuum Technology and Physics, China (6142207200202); Natural Science Foundation of Gansu Province, China (21JR7RA743);The Youth Talent Promotion Project of Gansu Province (GXH20210611-05)
More Information
  • 摘要:

    在月球探测器着陆过程中,发动机羽流与月面相互作用后溅起的月尘是月面环境危害的主要来源。本文以嫦娥五号任务测试数据作为仿真入口条件,采用计算流体动力学(CFD) 两阶段法建立了嫦娥五号任务中使用的喷管 1∶1 模型和真空羽流扩散侵蚀模型,研究了喷管在不同降落高度下的侵蚀速率,并计算了发动机距离月面高度为 0.5~2.0 m 范围时月尘颗粒的运动轨迹、扬尘角和速度特性。结果表明,基于剪切应力得到的最大侵蚀速率为8.83 kg/m2s,随着高度增加,侵蚀速率降低,与嫦娥五号降落相机相同高度下的分析结果一致。粒径为1、70 ìm 的月尘颗粒最大扬尘高度分别为 0.72、0.36 m,最大速度分别为 2520、1010 m/s。不同粒径月尘的扬尘角范围为 1.44°~2.27°,计算的扬尘角与 Apollo 探月任务中的结果相近。

     

  • 图 1  月面羽流真空扩散流动模型

    Figure 1.  The plume flow and diffusion model in lunar vacuum environment

    图 2  发动机喷管内流动特性云图

    Figure 2.  Cloud diagram plume gas flow contours in engine nozzle

    图 3  不同喷管高度下羽流场的Kn云图

    Figure 3.  Kn counters at different engine heights

    图 4  不同喷管高度下羽流场的速度分布云图

    Figure 4.  The plume gas velocity contours at different engine altitudes

    图 5  不同降落高度下羽流场压力云图

    Figure 5.  The plume gas pressure contours at different engine altitudes

    图 6  不同降落高度下月面羽流密度分布特性

    Figure 6.  The density profile of lunar surface at different landing altitudes

    图 7  不同降落高度下的颗粒侵蚀速率

    Figure 7.  The mass erosion rate at different landing altitudes

    图 8  不同降落高度下粒径为1 μm颗粒运动轨迹

    Figure 8.  The trajectories of 1 μm lunar dust particles at different engine altitudes

    图 9  不同降落高度下粒径为70 μm颗粒运动轨迹

    Figure 9.  Trajectories of 70 μm lunar dust particles at different landing altitudes

    图 10  不同降落高度下粒径为1 μm颗粒运动速度

    Figure 10.  Velocity of 1 μm lunar dust particles at different landing altitudes

    图 11  不同降落高度下粒径为70 μm颗粒运动速度

    Figure 11.  Velocity of 70 μm lunar dust particles at different engine altitudes

    表  1  发动机喷管出口流动参数仿真与实验结果对比

    Table  1.   Comparison of engine nozzle outlet flow parameters between simulation and ground test

    方法 马赫数/Ma 压力/Pa 温度/K 速度/(m·s−1)
    地面实验 5.22 170.02 744.69 3 218.56
    仿真计算 4.93 175.83 802.32 3 032.12
    下载: 导出CSV

    表  2  不同高度处月尘最大扬尘角

    Table  2.   Lunar dust elevation angle at different nozzle altitudes

    高度/m 粒径/μm 扬尘角/(°) 平均扬尘角/(°)
    0.5 1 0.90 2.24
    30 1.45
    70 2.24
    100 2.63
    1.0 1 0.49 1.44
    30 0.66
    70 1.44
    100 1.84
    1.5 1 3.17 2.27
    30 2.27
    70 2.27
    100 2.25
    2.0 1 2.82 2.02
    30 2.05
    70 2.02
    100 2.02
    下载: 导出CSV

    表  3  Apollo和嫦娥五号探月任务扬尘角对比

    Table  3.   Elevation angle comparison in Apollo and Chang’E-5 lunar exploration missions

    任务名称 扬尘角/(°) 任务名称 扬尘角/(°)
    Apollo 11 2.6 Apollo 14 2.4
    Apollo 15 8.1 Apollo 16 1.4
    Apollo 17 2.0 嫦娥5号 1.44~2.27
    下载: 导出CSV
  • [1] GAIER J R, HICKS M C, MISCONIN R M. Studies of simulated lunar dust on the properties of thermal-control surfaces[J]. Journal of Spacecraft and Rockets, 2013, 50(4): 848-852. doi: 10.2514/1.A32135
    [2] JOHNSON C L, DIETZ K L. Effects of the Lunar Environment on Optical Telescopes and Instruments [C]//Proceedings of the Space Astronomical Telescopes and Instruments. Orlando: International Society for Optics and Photonics, 1991: 208-218.
    [3] PIRICH R, WEIR J, LEYBLE D, et al. Effects of the lunar environment on space vehicle surfaces [C]//2010 IEEE Long Island Systems, Applications and Technology Conferenc. Piscataway: IEEE, 2010: 1-6.
    [4] CAIN J R. Lunar dust: the hazard and astronaut exposure risks[J]. Earth, Moon, and Planets, 2010, 107(1): 107-125. doi: 10.1007/s11038-010-9365-0
    [5] MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Plume impingement on a dusty lunar surface [C]//AIP Conference Proceedings. California: AIP, 2011: 1187-1192.
    [6] IMMER C, LANE J, METZGER P, et al. Apollo video photogrammetry estimation of plume impingement effects[J]. Icarus, 2011, 214(1): 46-52. doi: 10.1016/j.icarus.2011.04.018
    [7] METZGER P T, IMMER C D, DONAHUE C M, et al. Jet-induced cratering of a granular surface with application to lunar spaceports[J]. Journal of Aerospace Engineering, 2009, 22(1): 24-32. doi: 10.1061/(ASCE)0893-1321(2009)22:1(24)
    [8] BÜHLER C A. Experimental investigation of lunar dust impact wear[J]. Wear, 2015, 342/343: 244-251. doi: 10.1016/j.wear.2015.09.002
    [9] DONOHUE C M, METZGER P T, IMMER C D. Empirical Scaling Laws of Rocket Exhaust Cratering [EB/OL]. [2021-04-12]. http://arxiv.org/abs/2104.05176.pdf.
    [10] LANE J E, METZGER P T. Estimation of Apollo lunar dust transport using optical extinction measurements[J]. Acta Geophysica, 2015, 63(2): 568-599. doi: 10.1515/acgeo-2015-0005
    [11] METZGER P T, LANE J E, IMMER C D, et al. Scaling of erosion rate in subsonic jet experiments and Apollo lunar module landings [C]//Earth and Space 2010. Reston, VA: American Society of Civil Engineers, 2010: 191-207.
    [12] LANE J E, METZGER P T, CARLSON J W. Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow [C]//Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2010: 134-142.
    [13] LANE J E, METZGER P T, IMMER C D, et al. Lagrangian trajectory modeling of lunar dust particles [C]//Earth & Space 2008. Reston, VA: American Society of Civil Engineers, 2008: 1-9.
    [14] MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Plume impingement on a dusty lunar surface[J]. AIP Conference Proceedings, 2011, 1333(1): 1187-1192.
    [15] MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Modeling the interaction between a rocket plume, scoured regolith, and a plume deflection fence [C]//Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2012: 189-198.
    [16] MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Approach for modeling rocket plume impingement and dust dispersal on the moon[J]. Journal of Spacecraft and Rockets, 2015, 52(2): 362-374. doi: 10.2514/1.A33058
    [17] LIEVER P, TOSH A, ARSLANBEKOV R, et al. Modeling of rocket plume impingement flow and debris transport in lunar environment [C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2012: 800.
    [18] HE X Y, HE B J, CAI G B. Simulation of two-phase plume field of liquid thruster[J]. Science China Technological Sciences, 2012, 55(6): 1739-1748. doi: 10.1007/s11431-012-4825-6
    [19] RAHIMI A, EJTEHADI O, LEE K H, et al. Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing[J]. Acta Astronautica, 2020, 175: 308-326. doi: 10.1016/j.actaastro.2020.05.042
    [20] ZHANG H H, LI J, WANG Z G, et al. Guidance navigation and control for Chang’E-5 powered descent[J]. Space:Science and Technology, 2021, 2021: 9823609.
    [21] LI Y, REN D P, BO Z G, et al. Gas-particle two-way coupled method for simulating the interaction between a rocket plume and lunar dust[J]. Acta Astronautica, 2019, 157: 123-133. doi: 10.1016/j.actaastro.2018.12.024
    [22] BERG J J, GOLDSTEIN D B, VARGHESE P L, et al. DSMC simulation of europa water vapor plumes[J]. Icarus, 2016, 277: 370-380. doi: 10.1016/j.icarus.2016.05.030
    [23] TSENG W L, LAI I L, IP W H, et al. The 3D direct simulation Monte Carlo study of Europa’s gas plume[J]. Universe, 2022, 8(5): 261. doi: 10.3390/universe8050261
    [24] SLYUTA E N. Physical and mechanical properties of the lunar soil (a review)[J]. Solar System Research, 2014, 48(5): 330-353. doi: 10.1134/S0038094614050050
    [25] COLWELL J E, BATISTE S, HORÁNYI M, et al. Lunar surface: dust dynamics and regolith mechanics[J]. Reviews of Geophysics, 2007, 45(2): 1-26.
    [26] LI C L, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang’E-5 mission[J]. National Science Review, 2022, 9(2): 188. doi: 10.1093/nsr/nwab188
    [27] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193. doi: 10.1017/S0022112072001806
    [28] MORRIS, A B. Simulation of rocket plume impingement and dust dispersal on the lunar surface[D]. Austin: University of Texas at Austin, 2012.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  91
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 录用日期:  2022-09-03
  • 网络出版日期:  2022-09-14
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答