留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声纵扭-低频扭转复合振动攻丝实验

韩凤起 张德远

韩凤起,张德远. 超声纵扭-低频扭转复合振动攻丝实验[J]. 北京航空航天大学学报,2024,50(4):1077-1084 doi: 10.13700/j.bh.1001-5965.2022.0453
引用本文: 韩凤起,张德远. 超声纵扭-低频扭转复合振动攻丝实验[J]. 北京航空航天大学学报,2024,50(4):1077-1084 doi: 10.13700/j.bh.1001-5965.2022.0453
HAN F Q,ZHANG D Y. Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1077-1084 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0453
Citation: HAN F Q,ZHANG D Y. Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1077-1084 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0453

超声纵扭-低频扭转复合振动攻丝实验

doi: 10.13700/j.bh.1001-5965.2022.0453
基金项目: 中央引导地方科技发展资金(216Z1004G);河北省教育厅科学技术研究项目(ZD2020331);河北工业职业技术大学博士基金(zk202101)
详细信息
    通讯作者:

    E-mail:zhangdy@ buaa.edu.cn

  • 中图分类号: TG62

Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment

Funds: Central Funding Project for Local Science and Technology Development (216Z1004G); Funded by Science and Technology Project of Hebei Education Department (ZD2020331); Doctoral Fund of Hebei Vocational University of Industry and Technology (zk202101)
More Information
  • 摘要:

    针对钛合金低频扭转振动攻丝效率偏低的问题,提出了超声纵扭-低频扭转复合振动攻丝方法。进行了超声纵扭振动攻丝实验、不同切削液的复合振功攻丝实验和变参数复合振动攻丝实验,研究复合振动攻丝的工艺效果及参数变化的影响规律。实验结果表明:超声纵扭振动增强了切削液的润滑效果,降低了攻丝扭矩,与普通连续攻丝相比,M3螺纹孔的超声纵扭振动攻丝可降低攻丝扭矩约18%;在所选参数范围内,与低频扭转振动攻丝相比,复合振动攻丝最大可降低攻丝扭矩约30%;复合振动攻丝降低攻丝扭矩的效果,随净切削量、主轴转速的增大和回退量的减小而降低。

     

  • 图 1  实验系统

    Figure 1.  Experimental system

    图 2  超声纵扭振动换能器及工件的装夹方式

    Figure 2.  Ultrasonic longitudinal torsional vibration transducer and clamping method of workpiece

    图 3  超声纵扭振动攻丝和普通连续攻丝的扭矩对比

    Figure 3.  Torque comparison between ultrasonic longitudinal torsional vibration tapping and ordinary continuous tapping

    图 4  水溶性乳化液为切削液的攻丝扭矩波形对比

    Figure 4.  Comparison of tapping torque waveform with water-soluble emulsion as cutting fluid

    图 5  水溶性乳化液为切削液的局部攻丝扭矩波形

    Figure 5.  Local tapping torque waveform with water-soluble emulsion as cutting fluid

    图 6  低频扭转振动攻丝的重复切削模型

    Figure 6.  Repeated cutting model of low frequency torsional vibration tapping

    图 7  蓖麻油为切削液的攻丝扭矩波形对比

    Figure 7.  Comparison of tapping torque waveforms with castor oil as cutting fluid

    图 8  净切削量对攻丝扭矩的影响

    Figure 8.  Effect of net cutting amount on tapping torque

    图 9  净切削量对复合振动攻丝效果的影响

    Figure 9.  Effect of net cutting amount on compound vibration tapping

    图 10  回退量对攻丝扭矩的影响

    Figure 10.  Effect of backward amount on tapping torque

    图 11  回退量对复合振动攻丝效果的影响

    Figure 11.  Effect of backward amount on compound vibration tapping

    图 12  主轴转速对攻丝扭矩的影响

    Figure 12.  Effect of spindle speed on tapping torque

    图 13  主轴转速对复合振动攻丝效果的影响

    Figure 13.  Effect of spindle speed on compound vibration tapping

    图 14  螺纹照片

    Figure 14.  Photo of thread

  • [1] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(增刊1): 280-282.

    LI Y, ZHAO Y Q, ZENG W D. Application and development trend of aviation titanium alloy[J]. Materials Reports, 2020, 34(Sup1): 280-282(in Chinese).
    [2] 原国森, 兖利鹏, 韩艳艳. 钛合金的应用进展[J]. 热加工工艺, 2017, 46(4): 13-16.

    YUAN G S, YAN L P, HAN Y Y. Application progress of titanium alloy[J]. Hot Working Technology, 2017, 46(4): 13-16(in Chinese).
    [3] 刘彬, 刘延斌, 杨鑫, 等. TITANIUM 2008: 国际钛工业、制备技术与应用的发展现状[J]. 粉末冶金材料科学与工程, 2009, 14(2): 67-73.

    LIU B, LIU Y B, YANG X, et al. TITANIUM 2008: Development of international titanium industry, preparation technology and applications[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(2): 67-73(in Chinese).
    [4] 陈志同. 扭转振动机构学及振动攻丝技术研究[D]. 北京: 北京航空航天大学, 2001: 1-9.

    CHEN Z T. Research on torsional vibration mechanism and vibration tapping technology[D]. Beijing: Beihang University, 2001: 1-9 (in Chinese).
    [5] ZHANG D Y, CHEN D C. Relief-face friction in vibration tapping[J]. International Journal of Mechanical Sciences, 1998, 40(12): 1209-1222. doi: 10.1016/S0020-7403(98)00002-2
    [6] 张利军, 申伟. 钛合金材料攻丝技术的开发[J]. 工具技术, 2015, 49(2): 55-57.

    ZHANG L J, SHEN W. Research on tapping technology of titanium alloy material[J]. Tool Engineering, 2015, 49(2): 55-57(in Chinese).
    [7] 隈部淳一郎. 精密加工: 振动切削(基础与应用)[M]. 韩一昆, 薛万夫, 孙祥根, 等, 译. 北京: 机械工业出版社, 1985: 19-147.

    KUMABE J. Precision machining: Vibration cutting (foundation and application)[M]. HAN Y K, XUE W F, SUN X G, et al, translated. Beijing: China Machine Press, 1985: 19-147(in Chinese).
    [8] 李祥林, 薛万夫, 张日升. 振动切削及其在机械加工中的应用 [M]. 北京: 北京科学技术出版社, 1985: 5-15.

    LI X L, XUE W F, ZHANG R S. Vibration cutting and its application in machining[M]. Beijing: Beijing Science and Technology Press, 1985: 5-15(in Chinese).
    [9] 李光军, 张德远. 难加工材料的低频振动攻丝研究[J]. 中国机械工程, 2004, 15(6): 494-497. doi: 10.3321/j.issn:1004-132X.2004.06.008

    LI G J, ZHANG D Y. Investigation of low-frequency vibration tapping in diffcult-cutting matierals[J]. China Mechanical Engineering, 2004, 15(6): 494-497(in Chinese). doi: 10.3321/j.issn:1004-132X.2004.06.008
    [10] 李光军. 振动攻丝及其监控技术研究[D]. 北京: 北京航空航天大学, 2004: 49-100.

    LI G J. Research on vibration tapping and its monitoring technology[D]. Beijing: Beihang University, 2004: 49-100(in Chinese) .
    [11] 韩凤起. 难加工材料低频扭转振动攻丝理论和工艺的研究[D]. 北京: 北京航空航天大学, 2008: 13-108.

    HAN F Q. Study on theory and technology of vibration tapping of difficult-to-cut materials[D]. Beijing: Beihang University, 2008: 13-108(in Chinese).
    [12] 刘洋, 韩凤起, 卢慧敏, 等. Al2O3p/Al复合材料振动攻丝螺纹质量研究[J]. 航空精密制造技术, 2008, 44(6): 48-50.

    LIU Y, HAN F Q, LU H M, et al. Study on thread quality of low-frequency torsional vibration tapping on composite Al2O3p/Al[J]. Aviation Precision Manufacturing Technology, 2008, 44(6): 48-50 (in Chinese).
    [13] 韩荣第, 殷宝麟, 崔永鹏. 难加工材料小孔振动攻丝试验研究[J]. 哈尔滨工业大学学报, 2008, 40(1): 50-53.

    HAN R D, YIN B L, CUI Y P. Investigation of small-hole vibration tapping in difficult-to-cut materials[J]. Journal of Harbin Institute of Technology, 2008, 40(1): 50-53(in Chinese).
    [14] YIN B L, HAN R D. Investigation of the torque characteristics in vibration tapping of hardened steel[J]. International Journal of Machine Tools and Manufacture, 2006, 46(6): 623-630. doi: 10.1016/j.ijmachtools.2005.07.014
    [15] 王贵成, 朱金辉, 王磊, 等. 振动方式对攻丝加工效果影响的实验研究[J]. 机械科学与技术, 2008, 27(7): 857-860.

    WANG G C, ZHU J H, WANG L, et al. Experimental study of the effect of vibration mode on vibratory tapping[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(7): 857-860(in Chinese).
    [16] 张德远, 刘逸航, 耿大喜, 等. 超声加工技术的研究进展[J]. 电加工与模具, 2019(5): 1-10.

    ZHANG D Y, LIU Y H, GENG D X, et al. The research progress of ultrasonic machining technology[J]. Electromachining & Mould, 2019(5): 1-10(in Chinese).
    [17] KUO K L. Experimental investigation of ultrasonic vibration-assisted tapping[J]. Journal of Materials Processing Technology, 2007, 192-193: 306-311. doi: 10.1016/j.jmatprotec.2007.04.033
    [18] TSAO C C, KUO K L. Ultrasonic-assisted vibration tapping using taps with different coatings[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: s764-s768. doi: 10.1016/S1003-6326(12)61801-9
    [19] PAWAR S, PATIL S, PAWAR P, et al. Effect of axial and torsional vibrations on tapping performance[J]. Applied Mechanics and Materials, 2016, 826: 88-92. doi: 10.4028/www.scientific.net/AMM.826.88
    [20] 彭太江, 杨树臣, 杨志刚, 等. 超声波的减摩特性[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 88-90.

    PENG T J, YANG S C, YANG Z G, et al. Friction-reducing characteristics of ultrasonic wave[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(Sup2): 88-90(in Chinese).
    [21] 吴博达, 常颖, 杨志刚, 等. 超声振动减摩性能的实验研究及理论分析[J]. 中国机械工程, 2004, 15(9): 813-815.

    WU B D, CHANG Y, YANG Z G, et al. Experimental study and theoretical analysis on anti-friction capability of ultrasonic vibration[J]. China Mechanical Engineering, 2004, 15(9): 813-815(in Chinese).
    [22] 常颖, 彭太江, 阚君武, 等. 超声振动对摩擦系数影响的试验研究[J]. 压电与声光, 2003, 25(6): 511-513.

    CHANG Y, PENG T J, KAN J W, et al. Experiment study on the influence on friction-factor by ultrasonic vibration[J]. Piezoelectrics & Acoustooptics, 2003, 25(6): 511-513(in Chinese).
  • 加载中
图(14)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  89
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 录用日期:  2022-07-09
  • 网络出版日期:  2022-08-11
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答