留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造技术在载人航天工程中的应用与展望

刘洋 周建平 张晓天

刘洋,周建平,张晓天. 增材制造技术在载人航天工程中的应用与展望[J]. 北京航空航天大学学报,2023,49(1):83-91 doi: 10.13700/j.bh.1001-5965.2022.0455
引用本文: 刘洋,周建平,张晓天. 增材制造技术在载人航天工程中的应用与展望[J]. 北京航空航天大学学报,2023,49(1):83-91 doi: 10.13700/j.bh.1001-5965.2022.0455
LIU Y,ZHOU J P,ZHANG X T. Application and prospect of additive manufacturing technology in manned space engineering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):83-91 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0455
Citation: LIU Y,ZHOU J P,ZHANG X T. Application and prospect of additive manufacturing technology in manned space engineering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):83-91 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0455

增材制造技术在载人航天工程中的应用与展望

doi: 10.13700/j.bh.1001-5965.2022.0455
详细信息
    通讯作者:

    E-mail:liuyang15@buaa.edu.cn

  • 中图分类号: V461

Application and prospect of additive manufacturing technology in manned space engineering

More Information
  • 摘要:

    近年来,增材制造技术在载人航天工程中的应用迅速发展。对熔融沉积成型技术、激光选区熔化技术、线材电弧增材制造技术、热喷涂增材技术、月壤增材制造技术等用于载人航天工程的增材制造技术及这些技术的应用领域进行了总结。对增材制造技术在在轨制造飞行器替换件、制造大型桁架等难以在地面制造或发射的部件、制造飞行器复杂部件等应用领域进行了总结。提出未来载人航天工程技术的增材制造中应发展适合载人航天工程的材料体系,应研究微重力环境下的增材制造技术,同时未来还应发展相关工艺。

     

  • 图 1  NASA实现的首次太空增材制造试验[8]

    Figure 1.  NASA’s first space additive manufacturing test[8]

    图 2  模拟月壤SLM实验结果[24]

    Figure 2.  Experimental results of lunar regolith simulant by SLM[24]

    图 3  国际空间站2012—2020年后勤维护需求估计示意图[28]

    Figure 3.  Schematic diagram of logistics maintenance demand estimation of International Space Station from 2012 to 2020[28]

    图 4  中国科学院进行的微重力陶瓷材料立体光刻成型试验打印样件

    Figure 4.  Printing prototype of microgravity ceramic material three-dimensional lithography molding experiment conducted by Chinese Academy of Sciences

    表  1  应用于载人航天工程的增材制造技术及其具体应用领域

    Table  1.   Additive manufacturing technologies used in manned space engineering and their specific application fields

    增材制造技术可用于制造的载人航天工程领域
    熔融沉积成型技术功能材料、保护壳等高分子材料制品
    激光选区熔化技术薄壁、复杂曲面、空间点阵等复杂结构;
    助推器、涡轮叶片轴转子
    线材电弧增材制造技术在轨制造大规模金属设备
    热喷涂增材技术火箭、飞船部件涂层
    月壤增材制造技术月面原位增材制造
    下载: 导出CSV
  • [1] CLINTON JR R G. Overview of NASA initiatives in 3D printing and additive manufacturing[C]//AIRTEC International Congress. Munich: AIRTEC, 2014: 4191.
    [2] 中国运载火箭技术研究院. 3D打印, 引领航天制造进入新时代——航天科技一院211厂3D打印技术发展纪实[EB/OL]. (2017-11-06)[2021-10-12]. http://calt.spacechina.com/n485/n700/c9951/content.html.

    China Academy of Launch Vehicle Technology. 3D print, leading aerospace manufacturing into a new era: Documentary on the development of 3D print technology in the 211 factory of the first institute of China aerospace science and technology corporation[EB/OL]. (2017-11-06)[2021-10-12]. http://calt.spacechina.com/n485/n700/c9951/content.html(in Chinese).
    [3] 中国宇航学会. 2020年宇航领域科学问题和技术难题发布[EB/OL]. (2020-09-18)[2021-10-12]. http://www.csaspace.org.cn/n 2489262/n2489292/c3016456/content.html.

    Chniese Society of Astronautics. Scientific and technical problems in the field of astronautics in 2020 were published [EB/OL]. (2020-09-18)[2021-10-12]. http://www.csaspace.org.cn/n2489262/n2489292/c3016456/content.html(in Chinese).
    [4] 杨洋, 宋昌江, 费磊. 熔融沉积快速成型技术与三维扫描技术的结合应用[J]. 自动化技术与应用, 2014, 33(12): 39-43.

    YANG Y, SONG C J, FEI L. Application of fused deposition rapid prototyping technology and 3D scanning technology[J]. Techniques of Automation and Applications, 2014, 33(12): 39-43(in Chinese).
    [5] 方禄辉. 基于FDM的ABS类3D打印材料的研究[D]. 广州: 华南理工大学, 2016: 2-3.

    FANG L H . Research on 3D-printed materials of ABS based on FDM[D]. Guangzhou: South China University of Technology, 2016: 2-3(in Chinese).
    [6] 陈硕平, 易和平, 罗志虹, 等. 高分子3D打印材料和打印工艺[J]. 材料导报, 2016, 30(7): 54-59. doi: 10.11896/j.issn.1005-023X.2016.07.010

    CHEN S P, YI H P, LUO Z H, et al. The 3D printing polymers and their printing technologies[J]. Materials Reports, 2016, 30(7): 54-59(in Chinese). doi: 10.11896/j.issn.1005-023X.2016.07.010
    [7] 李涤尘, 鲁中良, 田小永, 等. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387.

    LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing-revolutionary technology for leading the aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525387(in Chinese).
    [8] 王功, 赵伟, 刘亦飞, 等. 太空制造技术发展现状与展望[J]. 中国科学: 物理学 力学 天文学, 2020, 50(4): 95-105.

    WANG G, ZHAO W, LIU Y F, et al. Review of space manufacturing technique and developments[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(4): 95-105(in Chinese).
    [9] Leonardo Company. POP3D the 3D printer for use in space [EB/OL]. (2015-09-09)[2021-10-12].https://www.leonardocompany.com/en/news-and-stories-detail/-/detail/pop-3-d-stampante-spazio-printer-space.
    [10] 李金翠, 迟百宏, 王丹, 等. 空间在轨增材制造技术进展与电子功能件的增材制造实现[J]. 工业技术创新, 2018, 5(4): 46-49. doi: 10.14103/j.issn.2095-8412.2018.04.009

    LI J C, CHI B H, WANG D, et al. Development of space on-orbit additive manufacturing technology and additive manufacturing realization of electronic functional components[J]. Industrial Technology Innovation, 2018, 5(4): 46-49(in Chinese). doi: 10.14103/j.issn.2095-8412.2018.04.009
    [11] 央视新闻客户端. 新飞船搭载“3D打印机” 我国成功完成首次太空“3D打印”[EB/OL]. (2020-05-07) [2021-10-12]. http://m.news.cctv.com/2020/05/07/ARTIOwn5Q3O0fOK3R947OZoI200507.shtml.

    CCTV. China successfully completed first space “3D Print” on new spaceship[EB/OL]. (2020-05-07) [2021-10-12]. http://m.news.cctv.com/2020/05/07/ARTIOwn5Q3O0fOK3R947OZoI200507.shtml(in Chinese).
    [12] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32-55.

    GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 32-55(in Chinese).
    [13] RHIAN J. NASA, aerojet rocketdyne test 3D printed rocket engine component [EB/OL]. (2013-07-12) [2021-10-12]. http://www.americaspace.com/2013/07/12/nasa-aerojet-rocketdyne-test-3d-printed-rocket-engine-component/.
    [14] 刘一丹. 我国首次实现航天发动机涡轮轴转子3D打印[J]. 军民两用技术与产品, 2016(3): 18. doi: 10.19385/j.cnki.1009-8119.2016.03.020

    LIU Y D. China realized 3D printing of turboshaft rotors for aerospace engines for the first time[J]. Dual Use Technologies & Products, 2016(3): 18(in Chinese). doi: 10.19385/j.cnki.1009-8119.2016.03.020
    [15] TANCOGNE D T, SPIERINGS A B, MOHR D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading[J]. Acta Materialia, 2016, 116(17): 14-28.
    [16] LATTURE R M, RODRIGUEZ R X, HOLMES JR L R, et al. Effects of nodal fillets and external boundaries on compressive response of an octet truss[J]. Acta Materialia, 2018, 149(9): 78-87.
    [17] FILIPPO M, GIUSEPPE V, SCIPPA A, et al. Finite element modelling of wire-arc-additive-manufacturing process[J]. Procedia Cirp, 2016, 55(17): 109-114.
    [18] ASALA G, KHAN A K, ANDERSSON J, et al. Microstructural analyses of ATI 718Plus, produced by wire-ARC additive manufacturing process[J]. Metallurgical& Materials Transactions A, 2017, 48(9): 4211-4228.
    [19] 何智. 超声冲击电弧增材制造钛合金零件的组织性能研究[D]. 武汉: 华中科技大学, 2016: 5-6.

    HE Z. Effect of ultrasonic impact on the properties of arc additice manufacturing of titanium alloy[D]. Wuhan: Huazhong University of Science and Technology, 2016: 5-6 (in Chinese).
    [20] 刘金平. Inconel625合金GTAW电弧增材制造工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 3-4.

    LIU J P. Research on Inconel625 alloy fabricated by GTAW arc additive manufacturing[D]. Harbin: Harbin Institute of Technology, 2016: 3-4(in Chinese).
    [21] REISGEN U, SHARMA R, OSTER L. Plasma multiwire technology with alternating wire feed for tailor-made material properties in wire and arc additive manufacturing[J]. Metals, 2019, 9(7): 745-758. doi: 10.3390/met9070745
    [22] 陈永雄, 罗政刚, 梁秀兵, 等. 热喷涂技术的装备应用现状及发展前景[J]. 中国表面工程, 2021, 34(4): 12-18. doi: 10.11933/j.issn.1007-9289.20210406003

    CHEN Y X, LUO Z G, LIANG X B, et al. Development status and prospect on equipment application of thermal spray technology[J]. China Surface Engineering, 2021, 34(4): 12-18(in Chinese). doi: 10.11933/j.issn.1007-9289.20210406003
    [23] FATERI M, GEBHARDT A, THUEMMLER S, et al. Experimental investigation on selective laser melting of glass[J]. Physics Procedia, 2014, 56(6): 357-364.
    [24] 李雯, 徐可宁, 黄勇, 等. 基于SLM的模拟月壤原位成形技术[J]. 北京航空航天大学学报, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690

    LI W, XU K N, HUANG Y, et al. In-situ forming of lunar regolith simulant via selective laser melting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0690
    [25] BARMATZ M, STEINFELD D, ANDERSON M, et al. 3D microwave print head approach for processing lunar and mars regolith[C]//Lunar and Planetary Science Conference. Maryland: USRA, 2014 , 1777: 1137-1138.
    [26] 孙一萌, 陈盛贵, 花开慧, 等. 模拟月壤原位增材制造技术研究进展[J]. 材料研究与应用, 2021, 15(2): 178-185. doi: 10.3969/j.issn.1673-9981.2021.02.014

    SUN Y M, CHEN S G, HUA K H, et al. A progress of the research on in-situ additive manufacturing technology of lunar regolith simulant[J]. Materials Research and Application, 2021, 15(2): 178-185(in Chinese). doi: 10.3969/j.issn.1673-9981.2021.02.014
    [27] LIU M, TANG W, DUAN W, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2019, 45(5): 5829-5836. doi: 10.1016/j.ceramint.2018.12.049
    [28] CIRILLO W, AASENG G, GOODLIFF K, et al. Supportability for beyond low earth orbit missions[C]//AIAA SPACE 2011 Conference & Exposition. Reston : AIAA, 2011: 7231-7242.
    [29] PATANE S, JOYCE E R, SNYDER M P, et al. Archinaut: In-space manufacturing and assembly for next-generation space habitats[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston: AIAA, 2017: 5227-5236.
    [30] National Research Council. 3D printing in space[M]. Washington, D. C. : National Academies Press, 2014: 39.
    [31] TAMINGER K M B, HAFLEY R A, DICUS D L. Solid freeform fabrication: An enabling technology for future space missions[C]//2002 International Conference on Metal Powder Deposition for Rapid Manufacturing. Princeton: Metal Powder Industries Federation, 2002.
    [32] 杨杰, 黎静, 吴文杰, 等. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167. doi: 10.11896/cldb.20090363

    YANG J, LI J, WU W J, et al. Research status and prospect of on-orbit additive manufacturing technology for large space truss[J]. Materials Reports, 2021, 35(3): 3159-3167(in Chinese). doi: 10.11896/cldb.20090363
    [33] 中国航天科技集团有限公司. 航天科技自主研制3D打印产品首次实现在轨应用[EB/OL]. (2018-07-23)[2021-10-12]. http://www.sasac.gov.cn/n2588025/n2588124/c9280766/content.html.

    China Aerospace Science and Technology Corporation. 3D printing products independently developed by China aerospace science and technology corporation have applied in orbit for the first time[EB/OL]. (2018-07-23) [2021-10-12]. http://www.sasac.gov.cn/n2588025/n2588124/c9280766/content.html(in Chinese).
    [34] 中国航天报. 全3D打印航天关键承力件通过飞行考核[EB/OL]. (2020-05-22) [2021-10-12]. http://www.spacechina.com/n25/n2014789/n2014804/c2922144/content.html.

    Chnia Space News. 3D printed aerospace key bearing parts have passed the flight examination[EB/OL]. (2020-05-22) [2021-10-12]. http://www.spacechina.com/n25/n2014789/n2014804/c2922144/content.html(in Chinese).
    [35] 陕西日报. 航天六院突破航天液体动力领域3D打印全流程技术——30余种产品应用于长征系列火箭50余次发射和飞行试验[EB/OL]. (2021-08-16) [2021-10-12]. http://gxt.shaanxi.gov.cn/zsxx/69307.jhtml.

    Shaanxi Daily. The sixth academy of China aerospace sciency adn industry corporation made breakthroughs in the whole process of 3D print technology in the field of liquid power—More than 30 products have been applied to more than 50 launches and flight tests of the long march rocket series [EB/OL]. (2021-08-16) [2021-10-12]. http://gxt.shaanxi.gov.cn/zsxx/69307.jhtml(in Chinese).
    [36] 中国青年报. 图纸变现实!3D打印技术“打印”航天装备新蓝图[EB/OL]. (2021-12-01) [2022-01-11]. http://news.cyol.com/gb/articles/2021-12/01/content_NnxWgT8WV.html.

    China Youth Daily. Drawings become reality! 3D printing technology “prints” the new blueprint of space equipment[EB/OL]. (2021-12-01) [2022-01-11]. http://news.cyol.com/gb/articles/2021-12/01/content_NnxWgT8WV.html(in Chinese).
    [37] NASA. Rapid analysis and manufacturing propulsion technology (RAMPT) [EB/OL]. (2020-06-02) [2021-10-12].https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/RAMPT.
    [38] WONG J Y, PFAHNL A C. 3D printing of surgical instruments for long-duration space missions[J]. Aviation, Space, and Environmental Medicine, 2014, 85(7): 758-763. doi: 10.3357/ASEM.3898.2014
    [39] NASA. 3D生物打印机将赴国际空间站, 材料是太空生物打印最大挑战[EB/OL]. (2018-08-16) [2021-10-12].https://tech.qq.com/a/20180816/038736.html.

    NASA. 3D bioprinter is headed to the international space station, while material is the biggest challenge [EB/OL]. (2018-8-16) [2021-10-12].https://tech.qq.com/a/20180816/038736.html(in Chinese).
    [40] NASA. Deep-space food science research improves 3D-printing capabilities[EB/OL].(2019-10-01) [2021-10-12]. https://spinoff.nasa.gov/Spinoff2019/ip_2.html#:~:text=Systems%20and%20Materials%20Research%20Corporation%20%28SMRC%29%20proposed%20building,micronutrients%2C%20flavor%2C%20and%20aroma%20delivered%20by%20inkjet%20technology.
    [41] 光明日报. “太空180”试验成功 我们离地外星球基地还远吗? [EB/OL]. (2016-12-16) [2021-10-12]. http://news.cctv.com/2016/12/16/ARTIGve5vHN0TGWeeZQP1A4S161216.shtml.

    Guangming Daily. “Space 180” test successed. Are we far from an extraterrestrial base?[EB/OL]. (2016-12-16) [2021-10-12]. http://news.cctv.com/2016/12/16/ARTIGve5vHN0TGWeeZQP1A4S161216.shtml(in Chinese).
    [42] 韩寿波, 张义文, 田象军, 等. 航空航天用高品质3D打印金属粉末的研究与应用[J]. 粉末冶金工业, 2017, 27(6): 44-51. doi: 10.13228/j.boyuan.issn1006-6543.20170100

    HAN S B, ZHANG Y W, TIAN X J, et al. Research and application of high quality 3D printing metal powders for aerospace use[J]. Powder Metallurgy Industry, 2017, 27(6): 44-51(in Chinese). doi: 10.13228/j.boyuan.issn1006-6543.20170100
    [43] 中国科学院空间应用工程与技术中心. 空间应用中心完成国际上首次微重力环境下陶瓷材料立体光刻制造技术试验[EB/OL]. (2018-06-20) [2021-10-12]. http://www.csu.cas.cn/xwkx/tpxw/201806/t20180620_5028655.html.

    Technology and Engineering Center for Space Utilization, China Academy of Sciences. Technology and engineering center for space utilization has completed the first test of stereo lithography manufacturing technology for ceramic materials in microgravity environment[EB/OL]. (2018-06-20) [2021-10-12]. http://www.csu.cas.cn/xwkx/tpxw/201806/t20180620_5028655.html(in Chinese).
    [44] ZHANG Y Y, JIN Z J, ZHANG W. Application of 3D printing in future manned space exploration[J]. Materials Science Forum, 2020(982): 92-97.
    [45] HAUNG J, LUO J, ZHANG K, et al. Development of a metal micro-droplet ejecting equipment for manipulation jetting trajectory[C]//2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). Piscataway: IEEE Press, 2018: 101-104.
    [46] 王震, 李秀杰, 巩维艳, 等. FDM变重力成形试验研究[J]. 新技术新工艺, 2018(12): 33-36. doi: 10.16635/j.cnki.1003-5311.2018.12.010

    WANG Z, LI X J, GONG W Y, et al. Experimental research on fused deposition modeling in variable gravity forming[J]. New Technology & New Process, 2018(12): 33-36(in Chinese). doi: 10.16635/j.cnki.1003-5311.2018.12.010
    [47] OWENS A, DEWECK O. Systems analysis of in-space manufacturing applications for international space station in support of the evolvable mars campaign[C]//Proceedings of the American Institute of Aeronautics and Astronautics SPACE Forum. Reston: AIAA, 2016.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  20
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 录用日期:  2022-07-17
  • 网络出版日期:  2022-08-02
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回
    常见问答