留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一致性理论的无人机编队控制与集结方法

苟进展 梁天骄 陶呈纲 马波 王海峰 吴宇

苟进展,梁天骄,陶呈纲,等. 基于一致性理论的无人机编队控制与集结方法[J]. 北京航空航天大学学报,2024,50(5):1646-1654 doi: 10.13700/j.bh.1001-5965.2022.0470
引用本文: 苟进展,梁天骄,陶呈纲,等. 基于一致性理论的无人机编队控制与集结方法[J]. 北京航空航天大学学报,2024,50(5):1646-1654 doi: 10.13700/j.bh.1001-5965.2022.0470
GOU J Z,LIANG T J,TAO C G,et al. Formation control and aggregation method of UAV based on consensus theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1646-1654 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0470
Citation: GOU J Z,LIANG T J,TAO C G,et al. Formation control and aggregation method of UAV based on consensus theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1646-1654 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0470

基于一致性理论的无人机编队控制与集结方法

doi: 10.13700/j.bh.1001-5965.2022.0470
基金项目: 国家自然科学基金(52102453); 航空科学基金(20180511001)
详细信息
    通讯作者:

    E-mail:liangtj@avic.com

  • 中图分类号: V221.3;TB273

Formation control and aggregation method of UAV based on consensus theory

Funds: National Natural Science Foundation of China (52102453); Aeronautical Science Foundation of China (20180511001)
More Information
  • 摘要:

    针对无人机运动学模型特点和远距离成形问题,提出一种基于改进一致性算法的无人机集结-成形策略。建立能直观描述编队队形的坐标系,根据纵向和横航向解耦的带自动驾驶仪的无人机三自由度运动学模型的特点,考虑无人机机动性能约束,对一致性算法进行改进,实现对无人机速度、航向和飞行高度的控制,提出编队队形控制算法。针对无人机初始间距大带来的调参问题,增加集结过程,并利用粒子群算法优化集结速度,避免航迹冲突,集结结束后再采用所提算法生成无人机航迹,提升算法的适应性。仿真结果表明:所提算法能使无人机在满足机动性约束的情况下,形成稳定队形;相比于直接成形法,所提策略提高改进一致性算法的适应性和安全性。

     

  • 图 1  Oxgyg坐标系与Oxryr坐标系的关系

    Figure 1.  Position relation between Oxgyg coordinate system and Oxryr coordinate system

    图 2  编队成形飞行航迹及状态响应

    Figure 2.  Trajectories and state response of formation forming flight

    图 3  无人机机动性约束值

    Figure 3.  Values of constraints for UAV maneuverability

    图 4  无人机与其他无人机间最小距离

    Figure 4.  Minimum distance between UAV and other UAVs

    图 5  无人机初始间距较大时的编队成形

    Figure 5.  Formation forming when the initial distance between UAVs is large

    图 6  无人机集结飞行航迹

    Figure 6.  Trajectories of UAVs at gathering

    图 7  含无人机集结的编队成形飞行航迹

    Figure 7.  Trajectories of formation forming with UAVs gathering phase

    表  1  无人机机动性能参数

    Table  1.   Maneuvering performance parameters of UAV

    vmax/
    (m·s−1)
    $ \begin{array}{c} {v_{\min }}/\\ ({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}) \end{array}$ $ \begin{array}{c} {a_{\max }}/\\ ({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 2}}) \end{array} $ $ \begin{array}{c} {a_{\min }}/\\({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 2}}) \end{array}$ $ \begin{array}{c}{\omega _{\max }}/ \\ ({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 1}}) \end{array} $ $ \begin{array}{c} {\omega _{\min }}/ \\ ({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 1}})\end{array} $ $ \begin{array}{c}{\alpha _{\max }}/ \\({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}})\end{array} $ $ \begin{array}{c}{\alpha _{\min }}/ \\({\mathrm{rad}} \cdot {{\mathrm{s}}^{ - 2}}) \end{array}$ $\begin{array}{c} v_{\max }^{\textit{z}}/ \\({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}) \end{array}$ $\begin{array}{c} v_{\min }^{\textit{z}}/ \\({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}})\end{array} $ $ \begin{array}{c}a_{\max }^{\textit{z}}/ \\({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 2}}) \end{array}$ $ \begin{array}{c}a_{\min }^{\textit{z}}/ \\({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 2}})\end{array} $
    300 50 49 −49 $ \dfrac{{\text{π}}}{9} $ $ - \dfrac{{\text{π}}}{9} $ $ \dfrac{{\text{π}}}{{12}} $ $ - \dfrac{{\text{π}}}{{12}} $ 20 −20 4 −4
    下载: 导出CSV

    表  2  无人机初始位置信息

    Table  2.   Initial position information of UAVs

    无人机 $ x/{{\mathrm{m}}} $ $ y/{{\mathrm{m}}} $ $ {\textit{z}}/{{\mathrm{m}}} $
    UAV1 −3 565 −2 846 0
    UAV2 4 098 3 415 0
    UAV3 1 372 2 588 0
    UAV4 −3 360 1 612 0
    下载: 导出CSV
  • [1] 张军国, 闫浩, 胡春鹤, 等. 无人机在林业中的应用及前景展望[J]. 林业工程学报, 2019, 4(1): 8-16.

    ZHANG J G, YAN H, HU C H, et al. Application and future development of unmanned aerial vehicle in forestry[J]. Journal of Forestry Engineering, 2019, 4(1): 8-16(in Chinese).
    [2] 南江林. 消防无人机研究与应用前景分析[J]. 消防科学与技术, 2017, 36(8): 1105-1107. doi: 10.3969/j.issn.1009-0029.2017.08.024

    NAN J L. The research and application prospect analysis of fire UAV[J]. Fire Science and Technology, 2017, 36(8): 1105-1107(in Chinese). doi: 10.3969/j.issn.1009-0029.2017.08.024
    [3] 代威, 张洪涛, 惠俊鹏. 无人机在未来海战场中的应用分析[J]. 兵器装备工程学报, 2018, 39(1): 21-24. doi: 10.11809/bqzbgcxb2018.01.005

    DAI W, ZHANG H T, HUI J P. Application analysis of UAV in future naval warfare field[J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 21-24(in Chinese). doi: 10.11809/bqzbgcxb2018.01.005
    [4] 韩亮, 任章, 董希旺, 等. 多无人机协同控制方法及应用研究[J]. 导航定位与授时, 2018, 5(4): 1-7.

    HAN L, REN Z, DONG X W, et al. Research on cooperative control method and application for multiple unmanned aerial vehicles[J]. Navigation Positioning and Timing, 2018, 5(4): 1-7(in Chinese).
    [5] NO T S, KIM Y, TAHK M J, et al. Cascade-type guidance law design for multiple-UAV formation keeping[J]. Aerospace Science and Technology, 2011, 15(6): 431-439. doi: 10.1016/j.ast.2010.08.011
    [6] SAIF O, FANTONI I, ZAVALA-RÍO A. Distributed integral control of multiple UAVs: Precise flocking and navigation[J]. IET Control Theory & Applications, 2019, 13(13): 2008-2017.
    [7] ASKARI A, MORTAZAVI M, TALEBI H A. UAV formation control via the virtual structure approach[J]. Journal of Aerospace Engineering, 2015, 28(1): 04014047.
    [8] 杜永浩, 王凌, 邢立宁. 空天无人系统智能规划技术综述[J]. 系统工程学报, 2020, 35(3): 416-432.

    DU Y H, WANG L, XING L N. Intelligent planning technologies for unmanned aerospace system: A literature review[J]. Journal of Systems Engineering, 2020, 35(3): 416-432(in Chinese).
    [9] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
    [10] GULZAR M M, RIZVI S T H, JAVED M Y, et al. Multi-agent cooperative control consensus: A comparative review[J]. Electronics, 2018, 7(2): 22. doi: 10.3390/electronics7020022
    [11] 陈旿, 张鑫, 金鑫, 等. 一种多智能体协同信息一致性算法[J]. 航空学报, 2017, 38(12): 321222. doi: 10.7527/S1000-6893.2017.321222

    CHEN W, ZHANG X, JIN X, et al. A cooperative information consensus algorithm for multi-agent system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 321222(in Chinese). doi: 10.7527/S1000-6893.2017.321222
    [12] DU H B, ZHU W W, WEN G H, et al. Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 342-353. doi: 10.1109/TCYB.2017.2777463
    [13] 何吕龙, 张佳强, 侯岳奇, 等. 有向通信拓扑和时延条件下的无人机集群时变编队控制[J]. 北京航空航天大学学报, 2020, 46(2): 314-323.

    HE L L, ZHANG J Q, HOU Y Q, et al. Time-varying formation control for UAV swarm with directed interaction topology and communication delay[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 314-323(in Chinese).
    [14] DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5014-5024. doi: 10.1109/TIE.2016.2593656
    [15] 吴宇, 梁天骄. 基于改进一致性算法的无人机编队控制[J]. 航空学报, 2020, 41(9): 323848. doi: 10.7527/S1000-6893.2020.23848

    WU Y, LIANG T J. Improved consensus-based algorithm for unmanned aerial vehicle formation control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 323848(in Chinese). doi: 10.7527/S1000-6893.2020.23848
    [16] 张佳龙, 闫建国, 张普, 等. 基于一致性算法的无人机协同编队避障研究[J]. 西安交通大学学报, 2018, 52(9): 168-174. doi: 10.7652/xjtuxb201809023

    ZHANG J L, YAN J G, ZHANG P, et al. Collision avoidance of unmanned aerial vehicle formation based on consensus control algorithm[J]. Journal of Xi’an Jiaotong University, 2018, 52(9): 168-174(in Chinese). doi: 10.7652/xjtuxb201809023
    [17] BEARD R W, MCLAIN T W. Small unmanned aircraft: Theory and practice[M]. Princeton: Princeton University Press, 2012: 164-172.
    [18] REN W, BEARD R W. Distributed consensus in multi-vehicle cooperative control[M]. Berlin: Springer, 2008: 7-22.
    [19] SHI Y H, EBERHART R C. Parameter selection in particle swarm optimization[C]//Proceedings of the Evolutionary Programming VII. Berlin: Springer, 1998: 591-600.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  102
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-11
  • 录用日期:  2022-07-22
  • 网络出版日期:  2022-12-28
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答