留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化材料的烧蚀性能参数辨识方法

程莫瀚 李文光 王志

程莫瀚,李文光,王志. 碳化材料的烧蚀性能参数辨识方法[J]. 北京航空航天大学学报,2024,50(4):1384-1391 doi: 10.13700/j.bh.1001-5965.2022.0474
引用本文: 程莫瀚,李文光,王志. 碳化材料的烧蚀性能参数辨识方法[J]. 北京航空航天大学学报,2024,50(4):1384-1391 doi: 10.13700/j.bh.1001-5965.2022.0474
CHENG M H,LI W G,WANG Z. Identification method of ablation performance parameters of carbonized materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1384-1391 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0474
Citation: CHENG M H,LI W G,WANG Z. Identification method of ablation performance parameters of carbonized materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1384-1391 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0474

碳化材料的烧蚀性能参数辨识方法

doi: 10.13700/j.bh.1001-5965.2022.0474
详细信息
    通讯作者:

    E-mail:liwenguang@bit.edu.cn

  • 中图分类号: V250.3

Identification method of ablation performance parameters of carbonized materials

More Information
  • 摘要:

    针对碳化材料烧蚀性能参数测量难度大的问题,对基于优化算法的烧蚀性能参数辨识方法进行了研究。根据一维连续模型描述碳化烧蚀材料的内部热响应情况,与公开试验数据进行对比验证,各测量点计算误差均小于15%。采用基函数表征法对材料碳化前后的比热容和导热率进行表征,基函数选取为切比雪夫多项式。根据PICA材料的温度测试试验数据,对材料的热解动力学参数和基函数的待定系数采用遗传算法进行辨识,将辨识得到的材料烧蚀性能参数代入一维连续模型中进行计算,与验证工况下的试验数据进行比对,计算得到的温度曲线平均相对误差小于10%。

     

  • 图 1  碳化烧蚀材料的分层模型

    Figure 1.  Delamination model of carbonized ablative materials

    图 2  边界层能量平衡

    Figure 2.  Boundary layer energy balance

    图 3  热响应模拟计算流程

    Figure 3.  Flow chart of thermal response simulation calculation

    图 4  碳化烧蚀材料沿壁厚方向温度分布

    Figure 4.  Temperature distribution of carbonized ablation material along wall thickness direction

    图 5  不同位置处材料热响应数值仿真与试验结果对比

    Figure 5.  Comparison between numerical simulation and experimental results of thermal response of materials at different positions

    图 6  收敛曲线

    Figure 6.  Convergence curve

    图 7  试验1温度对比曲线

    Figure 7.  Experiment 1 temperature comparison curve

    图 8  试验2温度对比曲线

    Figure 8.  Experiment 2 temperature comparison curve

    图 9  试验3温度对比曲线

    Figure 9.  Experiment 3 temperature comparison curve

    图 10  试验4温度对比曲线

    Figure 10.  Experiment 4 temperature comparison curve

    表  1  材料性能及初始条件

    Table  1.   Material properties and initial conditions

    材料性能 数值
    ${\rho _{\rm{v}}}$/(kg·m−3) 1 810
    ${\rho _{\rm{c}}}$/(kg·m−3) 1440
    ${\lambda_{\rm{v}}}$/($ {\text{W}} \cdot {{\text{m}}^{ - 1}} \cdot ^\circ {{\text{C}}^{ - 1}} $) $0.804 + 2.76 \times {10^{ - 4}}T$
    ${\lambda_{\rm{c}}}$/($ {\text{W}} \cdot {{\text{m}}^{ - 1}} \cdot ^\circ {{\text{C}}^{ - 1}} $) $ \begin{array}{*{20}{c}} \begin{gathered} 0.955 + 8.42 \times {10^{ - 4}}T - 4.07 \times {10^{ - 6}}{T^2} + 5.32 \times {10^{ - 9}}{T^3} \\ \end{gathered} \end{array} $
    $ {C_{\rm{v}}} $/(${\text{kJ}} \cdot {\text{k}}{{\text{g}}^{ - 1}} \cdot ^\circ {{\text{C}}^{ - 1}}$) $ 1.089 + 1.09 \times {10^{ - 3}}T $
    ${C_{\rm{c}}}$/(${\text{kJ}} \cdot {\text{k}}{{\text{g}}^{ - 1}} \cdot ^\circ {{\text{C}}^{ - 1}}$) $ 0.87 + 1.02 \times {10^{ - 3}}T $
    ${C_{\rm{pg}}}$/(${\text{kJ}} \cdot {\text{k}}{{\text{g}}^{ - 1}} \cdot ^\circ {{\text{C}}^{ - 1}}$) 9.63
    $\varepsilon $ 0.9
    $\sigma $/(${\text{W}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{K}}^{ - 4}}$) $5.73 \times {10^{ - 8}}$
    ${T_0}$/${\text{K}}$ 300
    $E$/(${\text{kJ}}\cdot {\mathrm{kmol}}^{-1}$) $2.60 \times {10^5}$
    $A$/${{\text{s}}^{ - 1}}$ $1.98 \times {10^{29}}$(剩余率≥0.91),$8.16 \times {10^{18}}$(剩余率<0.91)
    $m$ 17.33(剩余率≥0.91),6.3(剩余率≥0.91)
    下载: 导出CSV

    表  2  最终时刻不同位置温度对比

    Table  2.   Temperature comparison of different positions at the final moment

    位置/mm 温度/K 相对误差/%
    试验值 仿真值
    1 1264.8 1295.6 2.44
    5 1095.4 1188.4 8.49
    10 938.54 1020.6 8.74
    29 521.37 594.39 14.00
    下载: 导出CSV

    表  3  试验条件及编号

    Table  3.   Experimental conditions and numbers

    编号 热流密度/
    $\left({\text{W}}\cdot\left( {{{\text{m}}^2} \cdot {\text{s}}} \right)^{-1}\right)$
    持续
    时间/s
    材料
    厚度/cm
    测量
    位置/cm
    1 5.68×106 11 15.24 1.08
    2 5.68×106 11 15.24 1.93
    3 1.90×107 17 20.32 3.77
    4 9.66×106 22 10.16 2.56
    下载: 导出CSV
  • [1] 朱召贤, 朱小飞, 黄洪勇, 等. 低密度树脂基防热材料研究进展[J]. 中国材料进展, 2019, 38(11): 1086-1092. doi: 10.7502/j.issn.1674-3962.201806008

    ZHU Z X, ZHU Z F, HUANG H Y, et al. Research progress of low-density resin-based thermal protection materials[J]. Materials China, 2019, 38(11): 1086-1092(in Chinese). doi: 10.7502/j.issn.1674-3962.201806008
    [2] 张志成, 潘梅林, 刘初平, 等. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003.

    ZHANG Z C, PAN M L, LIU C P, et al. Hypersonic aerodynamic thermal and thermal protection[M]. Beijing: National Defense Industry Press, 2003(in Chinese).
    [3] 张军, 李伟, 方国东, 等. 树脂基防隔热复合材料高温响应分析方法研究进展[J]. 宇航学报, 2020, 41(6): 739-748. doi: 10.3873/j.issn.1000-1328.2020.06.011

    ZHANG J, LI W, FANG G D, et al. Review of high temperature response analysis of resin matrix thermal protection and insulation composites[J]. Journal of Astronautics, 2020, 41(6): 739-748(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.06.011
    [4] 黄娜, 刘亮, 王晓叶. 热重质谱联用技术对酚醛树脂热解行为及动力学研究[J]. 宇航材料工艺, 2012, 42(2): 99-102. doi: 10.3969/j.issn.1007-2330.2012.02.025

    HUANG N, LIU L, WANG X Y. Pyrolysis and kinetics of phenolic resin by TG-MS analysis[J]. Aerospace Materials & Technology, 2012, 42(2): 99-102(in Chinese). doi: 10.3969/j.issn.1007-2330.2012.02.025
    [5] 张莹, 胡宏林, 蒋丽琴, 等. 典型结构钡酚醛树脂热解非等温动力学及热稳定性[J]. 宇航材料工艺, 2021, 51(1): 17-24. doi: 10.12044/j.issn.1007-2330.2021.01.003

    ZHANG Y, HU H L, JIANG L Q, et al. Non-isothermal pyrolysis kinetic mechanism and thermal stabilization of phenolic resin with different characteristic structure[J]. Aerospace Materials & Technology, 2021, 51(1): 17-24(in Chinese). doi: 10.12044/j.issn.1007-2330.2021.01.003
    [6] 时天林, 高丽娟, 何也, 等. 酚醛树脂保温板热解动力学研究[J]. 辽宁科技大学学报, 2021, 44(1): 38-42.

    SHI T L, GAO L J, HE Y, et al. Study on pyrolysis kinetics of phenolic resin insulation board[J]. Journal of Liaoning University of Science and Technology, 2021, 44(1): 38-42(in Chinese).
    [7] 王苏, 闫卫锋, 马伟, 等. 酚醛树脂热解的激波管实验[C]//第一届高超声速科技学术会议. 北京: 中国力学学会, 2008: 21-26.

    WANG S, YAN W F, MA W, et al. Shock tube study on pyrolysis of phenolic resin[C]//Proceedings of the 1st Hypersonic Technology Academic Conference. Beijing: The Chinese Society of Theoretical and Applies Mechanics, 2008: 21-26(in Chinese).
    [8] 闫卫锋, 王苏, 李帅辉, 等. 酚醛树脂热解产物的激波管研究[C]//第十三届全国激波与激波管会议. 北京: 中国力学学会, 2008: 452-457.

    YAN W F, WANG S, LI S H, et al. Shock tube study on pyrolysis products of phenolic resin[C]//Proceedings of the 13th National Conference on Shock Waves and Shock Tubes. Beijing: The Chinese Society of Theoretical and Applies Mechanics, 2008: 452-457(in Chinese).
    [9] 闫卫锋, 王苏, 马伟, 等. 酚醛树脂高温热解的激波管实验研究[J]. 力学学报, 2009, 41(4): 463-468. doi: 10.3321/j.issn:0459-1879.2009.04.003

    YAN W F, WANG S, MA W, et al. Shock tube study of phenolic resin pyrolysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 463-468(in Chinese). doi: 10.3321/j.issn:0459-1879.2009.04.003
    [10] TELEJKO T, MALINOWSKI Z. Application of an inverse solution to the thermal conductivity identification using the finite element method[J]. Journal of Materials Processing Technology, 2004, 146: 145-155. doi: 10.1016/j.jmatprotec.2003.10.006
    [11] ZUECO J, ALHAMA F, FERNANDEZ C. Inverse determination of temperature dependent thermal conductivity using network simulation method[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 137-144.
    [12] CHAR M I, CHANG F P, TAI B C. Inverse determination of thermal conductivity by differential quadrature method[J]. International Communications in Heat and Mass Transfer, 2008, 35: 113-119. doi: 10.1016/j.icheatmasstransfer.2007.06.006
    [13] ARDAKANI D M, KHODADAD M. Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm[J]. Inverse Problems in Science & Engineering, 2009, 17(7): 855-870.
    [14] 曾建潮, 崔志华. 一种保证全局收敛的PSO算法[J]. 计算机研究与发展, 2004, 41(8): 1333-1338.

    ZENG J C, CUI Z H. A guaranteed global convergence particle swarm optimizer[J]. Journal of Computer Research and Development, 2004, 41(8): 1333-1338(in Chinese).
    [15] LIU F B. A hybrid method for the inverse heat transfer of estimating fluid thermal conductivity and heat capacity[J]. International Journal of Thermal Sciences, 2011, 50(5): 718-724.
    [16] 郭瑾. 树脂基复合材料热解层模型及高温热物性测试研究[D]. 北京: 北京交通大学, 2021.

    GUO J. Study on measurement of high-temperature thermophysical properties and pyrolysis layer model of polymer matrix composites[D]. Beijing: Beijing Jiaotong University, 2021(in Chinese).
    [17] MOYER C B, RINDAL R A. An analysis of the coupled chemically reacting boundary layer and the charring ablator: NASA CR-1061[R]. Washington, D.C.: NASA, 1968.
    [18] 刘骁, 国义军, 刘伟, 等. 碳化材料三维烧蚀热响应有限元计算研究[J]. 宇航学报, 2016, 37(9): 1150-1156.

    LIU X, GUO Y J, LIU W, et al. Numerical simulation research on three-dimensional ablative thermal response of charring ablators[J]. Journal of Astronautics, 2016, 37(9): 1150-1156(in Chinese).
    [19] HENDERSON J B, WIEBELT J A, TANT M R. A model for the thermal response of polymer composite materials with experimental verification[J]. Journal of Composite Materials, 1985, 19(6): 579-595. doi: 10.1177/002199838501900608
    [20] 孙斌, 于聪, 周王超, 等. NTC热敏电阻特性曲线的拟合方法研究[J]. 中国计量学院学报, 2012, 23(1): 75-79.

    SUN B, YU C, ZHOU W C, et al. Study on curve fitting methods of NTC thermistor characteristics[J]. Journal of China University of Metrology, 2012, 23(1): 75-79(in Chinese).
    [21] TRAN H K, JOHNSON C, RASKY D, et al. Phenolic impregnated carbon ablators pica as thermal protection system for discovery missions: NASA TM-110440[R]. Washington, D.C.: NASA, 1997.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  78
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-11
  • 录用日期:  2022-08-21
  • 网络出版日期:  2022-11-01
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答