留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于预定义时间的四旋翼滑模控制

刘浩 黄山 涂海燕

刘浩,黄山,涂海燕. 基于预定义时间的四旋翼滑模控制[J]. 北京航空航天大学学报,2024,50(5):1665-1674 doi: 10.13700/j.bh.1001-5965.2022.0481
引用本文: 刘浩,黄山,涂海燕. 基于预定义时间的四旋翼滑模控制[J]. 北京航空航天大学学报,2024,50(5):1665-1674 doi: 10.13700/j.bh.1001-5965.2022.0481
LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0481
Citation: LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0481

基于预定义时间的四旋翼滑模控制

doi: 10.13700/j.bh.1001-5965.2022.0481
详细信息
    通讯作者:

    E-mail:haiyantu@163.com

  • 中图分类号: TP273

Quadrotor sliding mode control based on predefined time

More Information
  • 摘要:

    针对四旋翼位置环和姿态环的控制问题,使得四旋翼位姿能够在预定时间内稳定,提出一种基于预定义时间滑模控制算法的位姿控制器。该控制器通过对四旋翼位置环和姿态环2个环节的控制,使得四旋翼的位姿能够在预定时间内稳定。理论推导及数值仿真表明:所提算法具有正确性;仿真结果表明:应用所提控制器的四旋翼的位置和姿态能够在预定时间内达到稳定。

     

  • 图 1  四旋翼模型

    Figure 1.  Quadrotor model

    图 2  控制系统结构图

    Figure 2.  Control system structure diagram

    图 3  基于本文算法的位置误差

    Figure 3.  Position errors based on the proposed algorithm

    图 4  基于本文算法的速度误差

    Figure 4.  Velocity errors based on the proposed algorithm

    图 5  基于本文算法的位置环滑模跟踪

    Figure 5.  Position loop sliding mode tracking based on the proposed algorithm

    图 6  基于本文算法的姿态误差

    Figure 6.  Attitude errors of quadrotor based on the proposed algorithm

    图 7  基于本文算法的滑模跟踪

    Figure 7.  Sliding mode tracking based on the proposed algorithm

    图 8  白噪声干扰

    Figure 8.  White noise interference

    图 9  白噪声干扰下的位置误差

    Figure 9.  Position errors under white noise interference

    图 10  白噪声干扰下的姿态误差

    Figure 10.  Attitude errors under white noise interference

    图 11  本文算法与固定时间滑模控制算法[19]位置误差

    Figure 11.  Position errors between the proposed algorithm and fixed time control algorithm[19]

    图 12  本文算法与固定时间滑模控制算法[19]姿态误差

    Figure 12.  Attitude errors between the proposed algorithm and fixed time control algorithm[19]

  • [1] ZHU X, ZHANG X X, YAN M D, et al. Three-dimensional formation keeping of multi-UAV based on consensus[J]. Journal of Central South University, 2017, 24(6): 1387-1395.
    [2] WANG B, HOU Z X, LU Y F, et al. Hover performance estimation and validation of battery powered vertical takeoff and landing aircraft[J]. Journal of Central South University, 2016, 23(10): 2595-2603. doi: 10.1007/s11771-016-3321-8
    [3] SONG Y L, XIAN B, ZHANG Y, et al. Towards autonomous control of quadrotor unmanned aerial vehicles in a GPS-denied urban area via laser ranger finder[J]. Optik, 2015, 126(23): 3877-3882. doi: 10.1016/j.ijleo.2015.07.058
    [4] PÉREZ-ALCOCER R, MORENO-VALENZUELA J, MIRANDA-COLORADO R. A robust approach for trajectory tracking control of a quadrotor with experimental validation[J]. ISA Transactions, 2016, 65: 262-274. doi: 10.1016/j.isatra.2016.08.001
    [5] SHANG W, JING G H, ZHANG D D, et al. Adaptive fixed time nonsingular terminal sliding-mode control for quadrotor formation with obstacle and inter-quadrotor avoidance[J]. IEEE Access, 2021, 9: 60640-60657. doi: 10.1109/ACCESS.2021.3074316
    [6] PAN H H, SUN W C. Nonlinear output feedback finite-time control for vehicle active suspension systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2073-2082. doi: 10.1109/TII.2018.2866518
    [7] LIU H, MA T, LEWIS F L, et al. Robust formation control for multiple quadrotors with nonlinearities and disturbances[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1362-1371. doi: 10.1109/TCYB.2018.2875559
    [8] MA Z Q, LIU Z X, HUANG P F, et al. Adaptive fractional-order sliding mode control for admittance-based telerobotic system with optimized order and force estimation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 5165-5174. doi: 10.1109/TIE.2021.3078385
    [9] SADALA S, PATRE B, GINOYA D. A new continuous integral sliding mode control algorithm for inverted pendulum and 2-DOF helicopter nonlinear systems: Theory and experiment[J]. Journal of Systems and Control Engineering, 2022, 236(3): 518-530.
    [10] LI H W, MAGHAREH A, WILFREDO CONDORI URIBE J, et al. An adaptive sliding mode control system and its application to real-time hybrid simulation[J]. Structural Control and Health Monitoring, 2022, 29(1): e2851.
    [11] 王宁, 王永, 余明裕. 四旋翼飞行器自适应动态面轨迹跟踪控制[J]. 控制理论与应用, 2017, 34(9): 1185-1194. doi: 10.7641/CTA.2017.60867

    WANG N, WANG Y, YU M Y. Adaptive dynamic surface trajectory tracking control of a quadrotor unmanned aerial vehicle[J]. Control Theory & Applications, 2017, 34(9): 1185-1194 (in Chinese). doi: 10.7641/CTA.2017.60867
    [12] 杨伟, 崔国增, 李泽, 等. 四旋翼飞行器有限时间命令滤波反步控制[J]. 控制工程, 2022, 29(9): 1557-1565.

    YANG W, CUI G Z, LI Z, et al. Finite-time command filtered backstepping control for a quadrotor UAV[J]. Control Engineering of China, 2022, 29(9): 1557-1565 (in Chinese).
    [13] XU B. Composite learning finite-time control with application to quadrotors[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(10): 1806-1815.
    [14] MURALIDHARAN V, EKBOTE A K, MAHINDRAKAR A D. Finite-time control of a quadrotor system[J]. IFAC Proceedings Volumes, 2014, 47(1): 643-647. doi: 10.3182/20140313-3-IN-3024.00008
    [15] WANG N, DENG Q, XIE G M, et al. Hybrid finite-time trajectory tracking control of a quadrotor[J]. ISA Transactions, 2019, 90: 278-286.
    [16] SHAO X L, TIAN B, YANG W. Fixed-time trajectory following for quadrotors via output feedback[J]. ISA Transactions, 2021, 110: 213-224. doi: 10.1016/j.isatra.2020.10.039
    [17] MA D L, XIA Y Q, SHEN G H, et al. Practical fixed-time disturbance rejection control for quadrotor attitude tracking[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7274-7283. doi: 10.1109/TIE.2020.3001800
    [18] WU C H, YAN J G, SHEN J H, et al. Predefined-time attitude stabilization of receiver aircraft in aerial refueling[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2021, 68(10): 3321-3325.
    [19] WANG J, MA X, ZHANG G W, et al. Fixed-time terminal sliding mode control for quadrotor aircraft[C]//Proceedings of the 11th International Conference on Modelling, Identification and Control. Berlin: Springer, 2020: 413-421.
  • 加载中
图(12)
计量
  • 文章访问数:  875
  • HTML全文浏览量:  110
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-12
  • 录用日期:  2022-11-14
  • 网络出版日期:  2022-12-28
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答