留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定电液伺服系统的时变输出约束自适应滤波控制

潘昌忠 何广 李智靖 周兰 熊培银

潘昌忠,何广,李智靖,等. 不确定电液伺服系统的时变输出约束自适应滤波控制[J]. 北京航空航天大学学报,2024,50(6):1819-1828 doi: 10.13700/j.bh.1001-5965.2022.0497
引用本文: 潘昌忠,何广,李智靖,等. 不确定电液伺服系统的时变输出约束自适应滤波控制[J]. 北京航空航天大学学报,2024,50(6):1819-1828 doi: 10.13700/j.bh.1001-5965.2022.0497
PAN C Z,HE G,LI Z J,et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1819-1828 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0497
Citation: PAN C Z,HE G,LI Z J,et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1819-1828 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0497

不确定电液伺服系统的时变输出约束自适应滤波控制

doi: 10.13700/j.bh.1001-5965.2022.0497
基金项目: 国家自然科学基金(62173138);湖南省自然科学基金(2022JJ30263,2023JJ40286);湖南省教育厅科研项目(20A186,21C0329)
详细信息
    通讯作者:

    E-mail:pancz@hnust.edu.cn

  • 中图分类号: TP273

Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints

Funds: National Natural Science Foundation of China (62173138); Hunan Provincial Natural Science Foundation of China (2022JJ30263, 2023JJ40286); Research Foundation of Education Bureau of Hunan Province, China (20A186,21C0329)
More Information
  • 摘要:

    针对电液伺服系统位置跟踪控制中存在的输出约束和不确定性问题,提出一种基于正切型时变障碍Lyapunov函数的输出约束自适应滤波控制方法。构造具有时变约束边界的正切型时变障碍Lyapunov函数,通过时变边界函数的参数设置,使系统输出具有较好的瞬态和稳态性能;设计径向基函数( RBF ) 神经网络及权重自适应学习律,在线逼近由模型不确定性和未知干扰组成的复合干扰,并将逼近值用于反馈控制;采用二阶指令滤波反步法设计状态反馈控制律和误差补偿机制, 避免反步设计中“计算爆炸”的问题,同时消除滤波误差,提高系统位置跟踪精度;依据Lyapunov稳定性理论证明闭环系统中所有误差信号的收敛性。仿真结果表明:系统的稳态误差在所提方法下约为3.48×10−8 m,相比于其他控制方法,跟踪误差始终约束在时变的约束边界内,跟踪精度和控制性能均得到提升。

     

  • 图 1  电液伺服系统结构

    Figure 1.  Structure of electro-hydraulic servo system

    图 2  二阶指令滤波器结构

    Figure 2.  Structure of second-order command filter

    图 3  电液伺服系统的时变输出约束自适应滤波控制系统结构

    Figure 3.  Structure of adaptive filtered control system with time-varying output constraints of electro-hydraulic servo system

    图 4  位置跟踪曲线

    Figure 4.  Curves of position tracking

    图 5  位置跟踪误差曲线

    Figure 5.  Curves of position tracking error

    图 6  控制输入曲线

    Figure 6.  Curves of control input

    图 7  复合干扰逼近效果

    Figure 7.  Approximation effect of compound disturbance

    表  1  某650 mm轧机电液伺服系统标称参数

    Table  1.   Nominal parameters of an electro-hydraulic servo system of 650 mm rolling mill

    参数 数值
    $ {{{K_{\text{a}}}} / {({{\text{A}} \mathord{\cdot {\vphantom {{\text{A}} {\text{V}}}} } {\text{V}}}}} ^{-1})$ 0.0125
    ${C_{\mathrm{d}}}$ 0.61
    $ {\omega \mathord{\left/ {\vphantom {\omega {\text{m}}}} \right. } {\text{m}}} $ 0.025
    $ {\rho /{\left( {{\text{kg}}\cdot{{\text{m}}^{{-3}}}} \right)}} $ 850
    ${{{K_{{\text{sv}}}}}/{( {{{\text{m}} \cdot {\text{A}}}} }}^{-1})$ 0.01
    ${{{m_0}} / {{\text{kg}}}}$ 1500
    $ {{{P_{\text{S}}}} \mathord{\left/ {\vphantom {{{P_{\text{S}}}} { {{\text{MPa}}} }}} \right. } { {{\text{MPa}}} }} $ 24
    $C_{\mathrm{t}}/({\mathrm{m}}^5\cdot({\mathrm{N}}\cdot{\mathrm{s}})^{-1} )$ 5×10−16
    $ {V / {{{\text{m}}^{\text{3}}}}} $ 3.768×10−3
    $ {{{K_0}} / {\left( {{ { {{\text{N}} \cdot{\text{m}^{-1}}}} {}}} \right)}} $ 1.25×109
    $ {{{A_{\text{p}}}} / {{{\text{m}}^{\text{2}}}}} $ 0.01256
    ${{{\beta _{\text{e}}}} \mathord{\left/ {\vphantom {{{\beta _{\text{e}}}} {{\text{P}}{{\text{a}}_{}}}}} \right. } {{\text{P}}{{\text{a}}_{}}}}$ 7×108
    $ {{{B_{{\text{p0}}}}} / {\left( {{\text{N}} \cdot {{\text{s}} \cdot {\text{m}^{-1}}}} \right)}} $ 2.25×106
    ${{{F_{{\text{L0}}}}} \mathord{\left/ {\vphantom {{{F_{{\text{L0}}}}} {\text{N}}}} \right. } {\text{N}}}$ 2×106
    下载: 导出CSV

    表  2  不同控制方法下的性能指标对比

    Table  2.   Comparison of performance indices under different control methods

    方法 ${t_{\text{s}}}/{\mathrm{s}}$ ${e_{\text{s}}}/{\text{m}}$
    文献[8]方法 0.45 1.97×10−6
    文献[13]方法 0.08 1.76×10−7
    文献[14]方法 0.05 1.39×10−7
    本文方法 0.07 3.48×10−8
    下载: 导出CSV
  • [1] MACALUSO A, JACAZIO G. Prognostic and health management system for fly-by-wire electro-hydraulic servo actuators for detection and tracking of actuator faults[J]. Procedia CIRP, 2017, 59: 116-121. doi: 10.1016/j.procir.2016.09.016
    [2] 郭新平, 汪成文, 刘华, 等. 基于扩张状态观测器的泵控电液伺服系统滑模控制[J]. 北京航空航天大学学报, 2020, 46(6): 1159-1168.

    GUO X P, WANG C W, LIU H, et al. Extended-state-observer based sliding mode control for pump-controlled electro-hydraulic servo system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1159-1168(in Chinese).
    [3] 刘华, 汪成文, 郭新平, 等. 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139.

    LIU H, WANG C W, GUO X P, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139(in Chinese).
    [4] FENG H, MA W, YIN C B, et al. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller[J]. Automation in Construction, 2021, 127: 103722. doi: 10.1016/j.autcon.2021.103722
    [5] YUAN H B, NA H C, KIM Y B. System identification and robust position control for electro-hydraulic servo system using hybrid model predictive control[J]. Journal of Vibration and Control, 2018, 24(18): 4145-4159. doi: 10.1177/1077546317721417
    [6] ONDER M, BAYRAK A, AKSOY S. RISE-based backstepping control design for an electro-hydraulic arm system with parametric uncertainties[J]. International Journal of Control, 2022, 95(10): 2815-2827. doi: 10.1080/00207179.2021.1939164
    [7] YANG X B, ZHENG X L, CHEN Y H. Position tracking control law for an electro-hydraulic servo system based on backstepping and extended differentiator[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 132-140. doi: 10.1109/TMECH.2017.2746142
    [8] 郭洪波, 李洪人. 基于Backstepping的阀控非对称缸电液伺服系统非线性控制[J]. 液压与气动, 2004(10): 38-40.

    GUO H B, LI H R. Backstepping-based nonlinear control for asymmetric cylinder electro-hydraulic servo system[J]. Chinese Hydraulics & Pneumatics, 2004(10): 38-40(in Chinese).
    [9] MINTSA H A, VENUGOPAL R, KENNE J P, et al. Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1092-1099. doi: 10.1109/TCST.2011.2158101
    [10] WRAT G, BHOLA M, RANJAN P, et al. Energy saving and fuzzy-PID position control of electro-hydraulic system by leakage compensation through proportional flow control valve[J]. ISA Transactions, 2020, 101: 269-280. doi: 10.1016/j.isatra.2020.01.003
    [11] 邵俊鹏, 王仲文, 李建英, 等. 电液位置伺服系统的规则自校正模糊PID控制器[J]. 中南大学学报(自然科学版), 2010, 41(3): 960-965.

    SHAO J P, WANG Z W, LI J Y, et al. Rule self-tuning fuzzy-PID controller ofelectro-hydraulic position servo system[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 960-965(in Chinese).
    [12] 张震阳, 汪成文, 郭新平, 等. 基于ESO的电液位置伺服系统反步滑模控制[J]. 北京航空航天大学学报, 2022, 48(6): 1082-1090.

    ZHANG Z Y, WANG C W, GUO X P, et al. Backstepping sliding mode control of electro hydraulic position servo system based on ESO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1082-1090(in Chinese).
    [13] 方一鸣, 石胜利, 李建雄, 等. 基于指令滤波的电液伺服系统自适应反步控制[J]. 电机与控制学报, 2013, 17(9): 105-110. doi: 10.3969/j.issn.1007-449X.2013.09.016

    FANG Y M, SHI S L, LI J X, et al. Adaptive backstepping control for electro-hydraulic servo system with input saturation based on command filter[J]. Electric Machines and Control, 2013, 17(9): 105-110(in Chinese). doi: 10.3969/j.issn.1007-449X.2013.09.016
    [14] 王广文, 姚建勇. 基于指令滤波的电液伺服系统输出反馈控制[J]. 上海交通大学学报, 2019, 53(12): 1482-1487.

    WANG G W, YAO J Y. Output feedback control of electro-hydraulic servo systems with command filter[J]. Journal of Shanghai Jiao Tong University, 2019, 53(12): 1482-1487(in Chinese).
    [15] MA H F, LI Y M, XIONG Z H. Design of funnel function-based discrete-time sliding mode control[J]. IET Control Theory & Applications, 2020, 14(16): 2413-2418.
    [16] YANG X W, DENG W X, YAO J Y. Neural adaptive dynamic surface asymptotic tracking control of hydraulic manipulators with guaranteed transient performance[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7339-7349. doi: 10.1109/TNNLS.2022.3141463
    [17] 董振乐, 杨英浩, 姚建勇, 等. 匹配和不匹配干扰共存时电液伺服系统预设性能渐近跟踪控制[J]. 中国机械工程, 2022, 33(20): 2437-2443.

    DONG Z L, YANG Y H, YAO J Y, et al. Asymptotic prescribedperformance tracking control of electro-hydraulic servo systems undermatched and unmatched disturbance[J]. China Mechanical Engineering, 2022, 33(20): 2437-2443(in Chinese).
    [18] LI Y M, TONG S C, LIU L, et al. Adaptive output-feedback control design with prescribed performance for switched nonlinear systems[J]. Automatica, 2017, 80: 225-231. doi: 10.1016/j.automatica.2017.02.005
    [19] NIE S C, QIAN L F, CHEN L M, et al. Barrier Lyapunov functions-based dynamic surface control with tracking error constraints for ammunition manipulator electro-hydraulic system[J]. Defence Technology, 2021, 17(3): 836-845. doi: 10.1016/j.dt.2020.04.010
    [20] 王云飞, 赵继云, 满家祥, 等. 基于干扰观测器的状态受限多缸同步控制策略[J]. 华南理工大学学报(自然科学版), 2022, 50(2): 93-101.

    WANG Y F, ZHAO J Y, MAN J X, et al. Multi-cylinder synchronization control strategy with state constraint based on disturbance observer[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(2): 93-101(in Chinese).
    [21] GUO Q, LIU Y L, JIANG D, et al. Prescribed performance constraint regulation of electrohydraulic control based on backstepping with dynamic surface[J]. Applied Sciences, 2018, 8(1): 76. doi: 10.3390/app8010076
    [22] 徐张宝, 朱忠领, 马大为, 等. 考虑状态约束的液压系统自适应控制[J]. 西安交通大学学报, 2017, 51(1): 97-102.

    XU Z B, ZHU Z L, MA D W, et al. Adaptive control of hydraulic systems with state constraints[J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 97-102(in Chinese).
    [23] GUO Q, LI X C, JIANG D. Full-state error constraints based dynamic surface control of electro-hydraulic system[J]. IEEE Access, 2018, 6: 53092-53101. doi: 10.1109/ACCESS.2018.2870956
    [24] YANG G C. Dual extended state observer-based backstepping control of electro-hydraulic servo systems with time-varying output constraints[J]. Transactions of the Institute of Measurement and Control, 2020, 42(5): 1070-1080. doi: 10.1177/0142331219883056
    [25] 陈强, 丁科新, 南余荣. 带有输出约束的柔性关节机械臂预设性能自适应控制[J]. 控制与决策, 2021, 36(2): 387-394.

    CHEN Q, DING K X, NAN Y R. Prescribed performance adaptive control of flexible-joint manipulators with output constraints[J]. Control and Decision, 2021, 36(2): 387-394(in Chinese).
    [26] 姚文龙, 亓冠华, 池荣虎, 等. 具有未知负载扰动的水井钻机电液伺服系统无模型自适应控制[J]. 控制理论与应用, 2022, 39(2): 231-240.

    YAO W L, QI G H, CHI R H, etal. Model-free adaptive control for water well drilling rig electro-hydraulic servo with unknown load disturbance[J]. Control Theory & Applications, 2022, 39(2): 231-240 (in Chinese).
    [27] 叶小华, 岑豫皖, 赵韩, 等. 基于液压弹簧刚度的阀控非对称缸建模仿真[J]. 中国机械工程, 2011, 22(1): 23-27.

    YE X H, CEN Y W, ZHAO H, et al. Modeling and simulation of hydraulic spring stiffness-based asymmetrical cylinder controlled by valve[J]. China Mechanical Engineering, 2011, 22(1): 23-27(in Chinese).
    [28] BESSA W M, DUTRA M S, KREUZER E. Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system[J]. Journal of Intelligent and Robotic Systems, 2010, 58(1): 3-16. doi: 10.1007/s10846-009-9342-x
    [29] GUANC, PAN S X. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters[J]. Control Engineering Practice, 2008, 16(11): 1275-1284.
    [30] HARTMAN E J, KEELER J D, KOWALSKI J M. Layered neural networks with Gaussian hidden units as universal approximations[J]. Neural Computation, 1990, 2(2): 210-215. doi: 10.1162/neco.1990.2.2.210
    [31] PARK J, SANDBERG I. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2): 246-257. doi: 10.1162/neco.1991.3.2.246
    [32] FARRELL J A, POLYCARPOU M, SHARMA M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1391-1395. doi: 10.1109/TAC.2009.2015562
    [33] DONG W J, FARRELL J A, POLYCARPOU M M, et al. Command filtered adaptive backstepping[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566-580. doi: 10.1109/TCST.2011.2121907
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-03-09
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答