留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Kinky Inference的输出调节自适应无拖曳控制

孙笑云 沈强 吴树范

孙笑云,沈强,吴树范. 基于改进Kinky Inference的输出调节自适应无拖曳控制[J]. 北京航空航天大学学报,2024,50(5):1604-1613 doi: 10.13700/j.bh.1001-5965.2022.0504
引用本文: 孙笑云,沈强,吴树范. 基于改进Kinky Inference的输出调节自适应无拖曳控制[J]. 北京航空航天大学学报,2024,50(5):1604-1613 doi: 10.13700/j.bh.1001-5965.2022.0504
SUN X Y,SHEN Q,WU S F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1604-1613 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0504
Citation: SUN X Y,SHEN Q,WU S F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1604-1613 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0504

基于改进Kinky Inference的输出调节自适应无拖曳控制

doi: 10.13700/j.bh.1001-5965.2022.0504
基金项目: 科技部重点研发计划“引力波探测”重点专项课题(2020YFC2200800);国家自然科学基金(62103275);上海市自然科学基金面上项目(20ZR1427000)
详细信息
    通讯作者:

    E-mail:qiangshen@sjtu.edu.cn

  • 中图分类号: V448.22.3

Output regulation adaptive drag-free control with enhanced Kinky Inference

Funds: The key special topic of the Ministry of Science and Technology’s major research and development plan “Gravitational Wave Detection” (2020YFC2200800); National Natural Science Foundation of China (62103275); General Project of Shanghai Natural Science Foundation (20ZR1427000)
More Information
  • 摘要:

    在空间引力波探测任务中,航天器内部检验质量因存在载荷硬件噪声、环境噪声及微推力器耦合噪声等复杂干扰,影响其无拖曳控制精度,难以实现超净、超稳控制需求。提出一种基于惰性适配Lipschitz常数Kinky Inference (LACKI)的航天器自适应无拖曳控制方法,运用监督学习规则实现先验知识不足、样本数据存在损坏时外界干扰的逼近和抑制,及基于输出调节的模型参考自适应控制(MRAC)方法实现检验质量精确的无拖曳控制。数值仿真验证了无拖曳控制中敏感轴平动和转动自由度的状态响应性能及LACKI规则针对外界干扰的估计效果,通过与常规线性控制方法的对比,验证了所提方法对于提高无拖曳控制精度的有效性。

     

  • 图 1  LISA Pathfinder航天器构型[10]

    Figure 1.  LISA Pathfinder spacecraft configuration [10]

    图 2  控制结构

    Figure 2.  Control structure

    图 3  LACKI规则下各自由度输入噪声估计

    Figure 3.  Input noise observation for each degree of freedom under LACKI rule

    图 4  LACKI-MRAC方案下增量学习性能

    Figure 4.  Supervised learning performance under LACKI-MRAC scheme

    图 5  不同方案下噪声估计误差对比

    Figure 5.  Noise estimation error comparison of various schemes

    图 6  LACKI-MRAC方案与QFT方案位移响应对比

    Figure 6.  Displacement response comparison between LACKI-MRAC scheme and QFT scheme

  • [1] FICHTER W, GATH P, VITALE S, et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity, 2005, 22(10): S139-S148. doi: 10.1088/0264-9381/22/10/002
    [2] MOBLEY F, FOUNTAIN G, SADILEK A, et al. Electromagnetic suspension for the tip-II satellite[J]. IEEE Transactions on Magnetics, 1975, 11(6): 1712-1716. doi: 10.1109/TMAG.1975.1058972
    [3] WU S F, FERTIN D. Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica, 2008, 62(12): 668-682. doi: 10.1016/j.actaastro.2008.01.038
    [4] LIAN X B, ZHANG J X, LU L, et al. Frequency separation control for drag-free satellite with frequency-domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4085-4096. doi: 10.1109/TAES.2021.3088456
    [5] 马浩君, 韩鹏, 高东, 等. 深空双质量块无拖曳卫星H鲁棒控制器设计[J]. 哈尔滨工业大学学报, 2021, 53(2): 1-13.

    MA H J, HAN P, GAO D, et al. Hrobust controller design for deep space drag-free satellite with two test masses[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 1-13 (in Chinese).
    [6] 张锦绣, 董晓光, 曹喜滨. 基于无速度测量的无拖曳卫星自适应控制方法[J]. 宇航学报, 2014, 35(4): 447-453.

    ZHANG J X, DONG X G, CAO X B. An adaptive controller for drag-free satellites without velocity measurement[J]. Journal of Astronautics, 2014, 35(4): 447-453 (in Chinese).
    [7] 胡明, 李洪银, 周泽兵. 无拖曳控制技术及其应用[J]. 载人航天, 2013, 19(2): 61-69.

    HU M, LI H Y, ZHOU Z B. Drag-free control technology and its applications[J]. Manned Spaceflight, 2013, 19(2): 61-69 (in Chinese).
    [8] 王玉爽. 无拖曳卫星控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    WANG Y S. Research on control method of towless satellite[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese).
    [9] WANG X D, LONG J, ZHU Q, et al. Drag-free control for cold air thrusters based on variable universe adaptive fuzzy PID[C]// 2014 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE Press, 2014: 159-163.
    [10] 付海清, 吴树范, 刘梅林, 等. 基于干扰观测器的空间惯性传感器自适应控制[J]. 北京航空航天大学学报, 2023, 49(10): 2799-2806.

    FU H Q, WU S F, LIU M L, et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(10): 2799-2806 (in Chinese).
    [11] FAN H J, ZHAO X, WANG Y J, et al. Adaptive failure compensation control for LEO drag-free satellite with actuator failures and disturbances[C]// 2016 Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2016: 1651-1656.
    [12] ZHAO X, FAN H J, WANG W. An adaptive compensation control scheme for LEO drag-free satellite under actuator failure[C]// 2016 35th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2016: 813-818.
    [13] SUN X Y, SHEN Q, WU S F. Partial state feedback MRAC-based reconfigurable fault-tolerant control of drag-free satellite with bounded estimation error[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6570-6586.
    [14] GUO J X, TAO G, LIU Y. A multivariable MRAC scheme with application to a nonlinear aircraft model[J]. Automatica, 2011, 47(4): 804-812. doi: 10.1016/j.automatica.2011.01.069
    [15] CALLIESS J P, ROBERTS S J, RASMUSSEN C E, et al. Lazily Adapted Constant Kinky Inference for nonparametric regression and model-reference adaptive control[J]. Automatica, 2020, 122: 109216. doi: 10.1016/j.automatica.2020.109216
    [16] JAN-PETER C. Conservative decision-making and inference in uncertain dynamical systems[D]. Oxford, UK: University of Oxford, 2014.
    [17] CALLIESS J P. Lipschitz optimisation for lipschitz interpolation[C]// 2017 American Control Conference (ACC). Piscataway: IEEE Press, 2017: 3141-3146.
    [18] MCNAMARA P, VITALE S, DANZMANN K. LISA pathfinder[J]. Classical and Quantum Gravity, 2008, 25(11): 114034. doi: 10.1088/0264-9381/25/11/114034
    [19] WU S F, GIULICCHI L, FENAL T, et al. Attitude stabilization of LISA pathfinder spacecraft using colloidal micro-newton thrusters[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: AIAA, 2010: AIAA2010-8198.
    [20] WU S F, GIULICCHI L, FENAL T, et al. Attitude control of LISA pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: AIAA2010-8199.
  • 加载中
图(6)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  121
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 录用日期:  2022-07-22
  • 网络出版日期:  2023-01-04
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答