留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未知干扰下四旋翼无人机群固定时间编队控制

郑伟铭 徐扬 罗德林

郑伟铭,徐扬,罗德林. 未知干扰下四旋翼无人机群固定时间编队控制[J]. 北京航空航天大学学报,2024,50(5):1702-1712 doi: 10.13700/j.bh.1001-5965.2022.0506
引用本文: 郑伟铭,徐扬,罗德林. 未知干扰下四旋翼无人机群固定时间编队控制[J]. 北京航空航天大学学报,2024,50(5):1702-1712 doi: 10.13700/j.bh.1001-5965.2022.0506
ZHENG W M,XU Y,LUO D L. Fixed-time formation control of quadrotor UAV swarm with unknown disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1702-1712 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0506
Citation: ZHENG W M,XU Y,LUO D L. Fixed-time formation control of quadrotor UAV swarm with unknown disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1702-1712 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0506

未知干扰下四旋翼无人机群固定时间编队控制

doi: 10.13700/j.bh.1001-5965.2022.0506
基金项目: 国家自然科学基金(61673327);2021年度太仓市基础研究计划项目(TC2021JC28);中央高校基本科研业务费专项资金(G2021KY05116);2021年西北工业大学太仓长三角研究院产业发展引导培育项目(CY20210202)
详细信息
    通讯作者:

    E-mail:luodelin1204@xmu.edu.cn

  • 中图分类号: V221+.3;TB553

Fixed-time formation control of quadrotor UAV swarm with unknown disturbances

Funds: National Natural Science Foundation of China (61673327); the Basic Research Programs of Taicang, 2021 (TC2021JC28); the Fundamental Research Funds for the Central Universities (G2021KY05116); the Industrial Development and Foster Project of Yangtze River Delta Research Institute of NPU, Taicang (CY20210202)
More Information
  • 摘要:

    在未知干扰条件下,针对欠驱动、非线性的四旋翼无人机群编队控制问题,提出了一种抗干扰的固定时间编队控制方法。首先,设计分布式固定时间滑模估计器,在仅有部分无人机获取到期望轨迹的条件下,每架无人机都能快速估计出自己的期望位置信息。其次,引入固定时间干扰观测器用于估计未知的复合干扰,使无人机能够生成干扰估计值以抵消复合干扰对其带来的影响。然后,在无人机的位置层与控制层设计固定时间滑模控制器,实现对期望轨迹的跟踪,所给出的方法能够满足姿态稳定收敛。最后,数值仿真验证了所提出方法的有效性。

     

  • 图 1  欠驱动四旋翼无人机示意图

    Figure 1.  Schematic diagram of underactuated quadrotor UAV

    图 2  编队控制架构图

    Figure 2.  Formation control architecture diagram

    图 3  欠驱动四旋翼无人机示意图

    Figure 3.  Schematic diagram of underactuated quadrotor UAV

    图 4  四旋翼无人机编队轨迹图

    Figure 4.  Trajectories of quadrotor UAVs’ formation

    图 5  干扰观测误差

    Figure 5.  Observation errors of disturbances

    图 6  期望位置估计误差

    Figure 6.  Estimation errors of desired positions

    图 9  姿态跟踪误差

    Figure 9.  Tracking errors of attitudes

    图 7  估计位置跟踪误差

    Figure 7.  Tracking errors of estimated positions

    图 8  角速度跟踪误差

    Figure 8.  Tracking errors of angular velocities

    表  1  仿真条件

    Table  1.   Simulation conditions

    控制参数 初始状态
    $ {\alpha _1} = 0.8,{\beta _1} = 2 $ $ {{\boldsymbol{p}}_1}\left( 0 \right)=\left[ { - 2 \;\;\; 2 \;\;\;0} \right]{\text{m}} $
    $ {\alpha _2} = {\beta _2} = 1.2 $ $ {{\boldsymbol{p}}_2}\left( 0 \right)=\left[ {2 \;\;\;2 \;\;\; 0} \right]{\text{m}} $
    $ {\xi _{v1}} = {\xi _{\omega 1}} = 0.5 $ $ {{\boldsymbol{p}}_{\text{3}}}\left( 0 \right)=\left[ {2 \;\;\; - 2 \;\;\;0} \right]{\text{m}} $
    $ {\xi _{v2}} = {\xi _{\omega 2}} = 200 $ $ {{\boldsymbol{p}}_{\text{4}}}\left( 0 \right)=\left[ { - 2 \;\;\; - 2 \;\;\;0} \right]{\text{m,}} $
    $ {\mu _{v1}} = {\mu _{\omega 1}} = 1.3 $ $ {{\boldsymbol{p}}_{\text{5}}}\left( 0 \right)=\left[ { - 2 \;\;\;0 \;\;\;0} \right]{\text{m}} $
    $ {\mu _{v2}} = {\mu _{\omega 2}} = 0.5 $ $ {{\boldsymbol{p}}_{\text{6}}}\left( 0 \right)=\left[ {2 \;\;\;0 \;\;\;0} \right]{\text{m}} $
    $ {\zeta _1} = {\zeta _1} = 0.1 $ $ {{\boldsymbol{v}}_i}\left( 0 \right)=\left[ {0 \;\;\;0 \;\;\;0} \right]{\text{m/s, }}i = 1,2, \cdots ,6 $
    $ {\gamma _1} = {\varUpsilon _1} = {\varUpsilon _3} = 1.1 $ $ {{{\text{ω}}}_i}\left( 0 \right)=\left[ {0 \;\;\;0 \;\;\;0} \right]{\text{rad/s, }}i = 1,2, \cdots ,6 $
    $ {\gamma _2} = {\varUpsilon _2} = {\varUpsilon _4} = 0.7 $ $ {{\boldsymbol{Q}}_i}\left( 0 \right)=\left[ {0 \;\;\;0 \;\;\;0 \;\;\;1} \right]{\text{, }}i = 1,2, \cdots ,6 $
    $ {k_{{\rm{sp}}}} = 1,{k_{{\rm{sa}}}} = 3 $
    $ {\lambda _{{\rm{sp}}1}} = {\lambda _{{\rm{sp}}2}} = 0.2 $
    $ {\lambda _{{\rm{sa}}1}} = {\lambda _{{\rm{sa}}2}} = 0.4 $
    下载: 导出CSV
  • [1] 段海滨, 申燕凯, 赵彦杰, 等. 2020年无人机热点回眸[J]. 科技导报, 2021, 39(1): 233-247.

    DUAN H B, SHEN Y K, ZHAO Y J, et al. Review of technological hotspots of unmanned aerial vehicle in 2020[J]. Science & Technology Review, 2021, 39(1): 233-247(in Chinese).
    [2] 任章, 郭栋, 董希旺, 等. 飞行器集群协同制导控制方法及应用研究[J]. 导航定位与授时, 2019, 6(5): 1-9.

    REN Z, GUO D, DONG X W, et al. Research on the cooperative guidance and control method and application for aerial vehicle swarm systems[J]. Navigation Positioning and Timing, 2019, 6(5): 1-9(in Chinese).
    [3] 徐力昊, 张宇, 许斌. 基于双向电机驱动的四旋翼机动飞行控制[J]. 北京航空航天大学学报, 2021, 47(2): 373-381.

    XU L H, ZHANG Y, XU B. Maneuvering flight control of QUAV based on bi-directional motor actuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 373-381(in Chinese).
    [4] KENDOUL F, NONAMI K, FANTONI L, et al. An adaptive vision-based autopilot for mini flying machines guidance, navigation and control[J]. Autonomous Robots, 2009, 27(3): 165. doi: 10.1007/s10514-009-9135-x
    [5] CHEN M, HUZMEZAN M. A combined MBPC/ 2 DOF H controller for a quad rotor UAV[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2003: 1716-1721.
    [6] BOUABDALLAH S, NOTH A, SIEGWART R. PID vs LQ control techniques applied to an indoor micro quadrotor[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots & Systems. Piscataway: IEEE Press, 2004: 2451-2456.
    [7] 马思迁, 董朝阳, 马鸣宇, 等. 基于自适应通信拓扑四旋翼无人机编队重构控制[J]. 北京航空航天大学学报, 2018, 44(4): 841-850.

    MA S Q, DONG C Y, MA M Y, et al. Formation reconfiguration control of quadrotor UAVs based on adaptive communication topology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 841-850(in Chinese).
    [8] EFE M O. Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes[C]//Proceedings of Control & Automation, 2007. MED '07. Mediterranean Conference on. Piscataway: IEEE Press, 2007: 1162-1167.
    [9] GONZALEZ-HERNANDEZ I, PALACIOS F M, CRUZ S S, et al. Real-time altitude control for a quadrotor helicopter using a super-twisting controller based on high-order sliding mode observer[J]. International Journal of Advanced Robotic Systems, 2017, 14(1): 172988141668711.
    [10] SATICI A C, POONAWALA H A, SPONG M W. Robust Optimal Control of Quadrotor UAVs[J]. IEEE Access, 2013, 1: 79-93. doi: 10.1109/ACCESS.2013.2260794
    [11] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
    [12] MOREAU L. Stability of multiagent systems with time-dependent communication links[J]. IEEE Transactions on Automatic Control, 2005, 50(2): 169-182. doi: 10.1109/TAC.2004.841888
    [13] 朱旭, 张逊逊, 尤谨语, 等. 基于信息一致性的无人机紧密编队集结控制[J]. 航空学报, 2015, 36(12): 3919-3929.

    ZHU X, ZHANG X X, YOU J Y, et al. Swarm control of UAV close formation based on information consensus[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3919-3929(in Chinese).
    [14] 郑伟铭, 徐扬, 罗德林. 多四旋翼无人机系统分布式分层编队合围控制[J]. 北京航空航天大学学报, 2022, 48(6): 1091-1105.

    ZHENG W M, XU Y, LUO D L. Distributed hierarchical formation-containment control of multiple quadrotor UAV systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1091-1105(in Chinese).
    [15] CHEN G, LEWIS F L, XIE L. Finite-time distributed consensus via binary control protocols[J]. Automatica, 2011, 47(9): 1962-1968. doi: 10.1016/j.automatica.2011.05.013
    [16] LIU X, LAM J, YU W, et al. Finite-time consensus of multiagent systems with a switching protocol[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(4): 853-862.
    [17] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110. doi: 10.1109/TAC.2011.2179869
    [18] MENG D, JIA Y, Du J. Finite-time consensus for multiagent systems with cooperative and antagonistic interactions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 762-770. doi: 10.1109/TNNLS.2015.2424225
    [19] HONG H, YU W, YU X, et al. Fixed-time connectivity-preserving distributed average tracking for multiagent systems[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2017, 64(10): 1192-1196.
    [20] NING B, ZUO Z, JIN J, et al. Distributed fixed-time coordinated tracking for nonlinear multi-agent systems under directed graphs[J]. Asian Journal of Control, 2018, 20(2): 646-658. doi: 10.1002/asjc.1612
    [21] SHUSTER M. A survey of attitude representations[J]. Journal of Astronautical Sciences, 1993, 41(4): 439-517.
    [22] LI W, LIU L, FENG G. Containment control with multiple leaders for nonlinear multi-agent systems with unstabilizable linearizations[J]. Neurocomputing, 2020, 380: 43-50. doi: 10.1016/j.neucom.2019.10.088
    [23] ZUO Z Y, TIAN B L, DEFOORT M, et al. Fixed-time consensus tracking for multi-agent systems with high-order integrator dynamics[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 563-570. doi: 10.1109/TAC.2017.2729502
    [24] DONG Y, ZOU A M, SUN Z W. Predefined-time predefined-bounded attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 464-472. doi: 10.1109/TAES.2021.3103258
    [25] 邹尧, 孟子阳. 垂直起降飞行器的自适应集群编队飞行控制[J]. 中国科学:技术科学, 2020, 50(4): 369-379. doi: 10.1360/SST-2019-0289

    ZOU Y, MENG Z Y. Adaptive formation control of multiple vertical takeoff and landing UAVs[J]. Scientia Sinica Technologica, 2020, 50(4): 369-379(in Chinese). doi: 10.1360/SST-2019-0289
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  81
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 录用日期:  2022-07-29
  • 网络出版日期:  2023-01-12
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答