留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向时间触发流量调度的虚拟网络嵌入方法

熊峰 李峭 李继 冯嘉颖

熊峰,李峭,李继,等. 面向时间触发流量调度的虚拟网络嵌入方法[J]. 北京航空航天大学学报,2024,50(6):1982-1990 doi: 10.13700/j.bh.1001-5965.2022.0511
引用本文: 熊峰,李峭,李继,等. 面向时间触发流量调度的虚拟网络嵌入方法[J]. 北京航空航天大学学报,2024,50(6):1982-1990 doi: 10.13700/j.bh.1001-5965.2022.0511
XIONG F,LI Q,LI J,et al. Time-triggered traffic scheduling-oriented virtual network embedding method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1982-1990 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0511
Citation: XIONG F,LI Q,LI J,et al. Time-triggered traffic scheduling-oriented virtual network embedding method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1982-1990 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0511

面向时间触发流量调度的虚拟网络嵌入方法

doi: 10.13700/j.bh.1001-5965.2022.0511
基金项目: 载人航天领域预先研究项目(060301)
详细信息
    通讯作者:

    E-mail:avionics@buaa.edu.cn

  • 中图分类号: V247;TP393

Time-triggered traffic scheduling-oriented virtual network embedding method

Funds: Advance Research Projects in the Field of Manned Spaceflight (060301)
More Information
  • 摘要:

    网络虚拟化技术将物理网络中的节点、链路资源进行抽象,通过虚拟网络嵌入(VNE)方法,使多个虚拟网络(VN)共享底层网络(SN)资源。对于应用于航空航天电子领域的时间触发以太网(TTE),提出一种面向时间触发流量调度的虚拟网络嵌入(TT-VNE)方法,在满足传统虚拟网络嵌入问题的总资源量限制条件的同时,保证时间触发(TT)流量的严格周期性。在求解过程中,根据与虚拟节点相连的链路中TT流量带宽需求及其总带宽资源需求对虚拟节点进行排序,利用广度优先搜索算法嵌入虚拟节点,并在候选最短路径集合中对虚拟链路进行路径规划;如果当前虚拟链路中TT流量不可调度,则进行局部虚拟节点重新嵌入与路径规划的迭代设计。仿真结果表明:TT-VNE方法的请求接受率不低于VNE-DCC、VNE-NTANRC-D、ELECTRE-VNE这3种既有方法,且当星型拓扑中虚拟网络请求数超过30时,其请求接受率比仅考虑网络拓扑属性和资源属性的VNE-NTANRC-D方法提高约14.3%。

     

  • 图 1  TT-VNE方法流程

    Figure 1.  Flow chart of TT-VNE method

    图 2  树状网络与星型网络拓扑

    Figure 2.  Tree network and star network topologies

    图 3  树状拓扑中4种方法性能对比

    Figure 3.  Performance comparison of four methods in tree topology

    图 4  星型拓扑中4种方法性能对比

    Figure 4.  Performance comparison of four methods in star topology

    图 5  T3所用物理网络拓扑结构

    Figure 5.  Physical network topology used by T3

    图 6  ${\rm T}3$中4种方法性能对比

    Figure 6.  Performance comparison of four methods in ${\rm T}3$

    表  1  虚拟网络参数设置

    Table  1.   Parameter setting of virtual networks

    参数名称 取值范围
    虚拟节点数 U(2,4)
    虚拟节点容量需求 U(5,10)
    虚拟链路数 U((n−1),n(n−1)/2)
    每条虚拟链路TT消息数 U(5,10)
    TT消息长度/ Bytes U(64,1518)
    TT消息周期/ms 2x3y
    虚拟链路带宽/(Mb·s−1) $ U[{b}_{\text{TT}},\beta {b}_{\text{TT}}] $
    下载: 导出CSV
  • [1] ZHANG P Y, PANG X, BI Y X, et al. DSCD: Delay sensitive cross-domain virtual network embedding algorithm[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2913-2925. doi: 10.1109/TNSE.2020.3005570
    [2] HAERI S, TRAJKOVIC L. Virtual network embedding via Monte Carlo tree search[J]. IEEE Transactions on Cybernetics, 2018, 48(2): 510-521. doi: 10.1109/TCYB.2016.2645123
    [3] CAO H T, HU H, QU Z C, et al. Heuristic solutions of virtual network embedding: a survey[J]. China Communications, 2018, 15(3): 186-219. doi: 10.1109/CC.2018.8332001
    [4] LI Z F, LU Z B, DENG S H, et al. A self-adaptive virtual network embedding algorithm based on software-defined networks[J]. IEEE Transactions on Network and Service Management, 2019, 16(1): 362-373. doi: 10.1109/TNSM.2018.2876789
    [5] CAO H T, ZHU H B, YANG L X. Collaborative attributes and resources for single-stage virtual network mapping in network virtualization[J]. Journal of Communications and Networks, 2019, 22(1): 61-71.
    [6] WU S C, YIN H, CAO H T, et al. Node ranking strategy in virtual network embedding: an overview[J]. China Communications, 2021, 18(6): 114-136. doi: 10.23919/JCC.2021.06.010
    [7] ZHANG P Y, YAO H P, LIU Y J. Virtual network embedding based on the degree and clustering coefficient information[J]. IEEE Access, 2016, 4: 8572-8580. doi: 10.1109/ACCESS.2016.2632421
    [8] CAO H T, YANG L X, ZHU H B. Novel node-ranking approach and multiple topology attributes-based embedding algorithm for single-domain virtual network embedding[J]. IEEE Internet of Things Journal, 2018, 5(1): 108-120. doi: 10.1109/JIOT.2017.2773489
    [9] ZHANG P Y, YAO H P, QIU C, et al. Virtual network embedding using node multiple metrics based on simplified ELECTRE method[J]. IEEE Access, 2018, 6: 37314-37327. doi: 10.1109/ACCESS.2018.2847910
    [10] ZHANG P Y, HONG Y R, PANG X, et al. VNE-HPSO: Virtual network embedding algorithm based on hybrid particle swarm optimization[J]. IEEE Access, 2020, 8: 213389-213400. doi: 10.1109/ACCESS.2020.3040335
    [11] ZHANG P Y, PANG X, KIBALYA G, et al. GCMD: Genetic correlation multi-domain virtual network embedding algorithm[J]. IEEE Access, 2021, 9: 67167-67175. doi: 10.1109/ACCESS.2021.3076916
    [12] STEINER W. An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks[C]// Proceedings of the 31st IEEE Real-Time Systems Symposium. Piscataway: IEEE Press, 2010: 375-384.
    [13] POZO F, RODRIGUEZ-NAVAS G, STEINER W, et al. Period-aware segmented synthesis of schedules for multi-hop time-triggered networks[C]// Proceedings of the IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications. Piscataway: IEEE Press, 2016: 170-175.
    [14] POZO F, STEINER W, RODRIGUEZ-NAVAS G, et al. A decomposition approach for SMT-based schedule synthesis for time-triggered networks[C]// Proceedings of the IEEE 20th Conference on Emerging Technologies & Factory Automation. Piscataway: IEEE Press, 2015: 1-8.
    [15] 郑重, 何锋, 李浩若, 等. 基于贪婪随机自适应搜索法的TTE通信调度算法[J]. 北京航空航天大学学报, 2021, 47(11): 2268-2276.

    ZHENG Z, HE F, LI H R, et al. Scheduling algorithm of TTE network based on greedy randomized adaptive search procedure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2268-2276(in Chinese).
    [16] LOVELESS A. On time-triggered Ethernet in NASA’s Lunar Gateway[EB/OL]. (2020-1-60) [2022-05-29]. https://ntrs.nasa.gov/citations/20205005104.
    [17] 宋梓旭, 李峭, 汪晶晶, 等. 基于可调度性排序的时间触发调度表生成方法[J]. 北京航空航天大学学报, 2018, 44(11): 2388-2395.

    SONG Z X, LI Q, WANG J J, et al. Time-triggered scheduling table generation method based on schedulability ranking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2388-2395 (in Chinese).
    [18] ZHONG C M, JIA H Y, WAN H, et al. DRLS: A deep reinforcement learning based scheduler for time-triggered Ethernet[C]// Proceedings of the International Conference on Computer Communications and Networks. Piscataway: IEEE Press, 2021: 1-11.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  84
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 录用日期:  2022-10-30
  • 网络出版日期:  2022-11-22
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答