留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿用正铲液压挖掘机人机协同控制

董宝祥 秦涛 杨旭 李运华

董宝祥,秦涛,杨旭,等. 矿用正铲液压挖掘机人机协同控制[J]. 北京航空航天大学学报,2024,50(6):1952-1959 doi: 10.13700/j.bh.1001-5965.2022.0517
引用本文: 董宝祥,秦涛,杨旭,等. 矿用正铲液压挖掘机人机协同控制[J]. 北京航空航天大学学报,2024,50(6):1952-1959 doi: 10.13700/j.bh.1001-5965.2022.0517
DONG B X,QIN T,YANG X,et al. Human-machine collaborative control of forward shovel hydraulic mining excavators[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1952-1959 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0517
Citation: DONG B X,QIN T,YANG X,et al. Human-machine collaborative control of forward shovel hydraulic mining excavators[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1952-1959 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0517

矿用正铲液压挖掘机人机协同控制

doi: 10.13700/j.bh.1001-5965.2022.0517
基金项目: NSFC-山西煤基低碳联合基金(U1910211)
详细信息
    通讯作者:

    E-mail:yhli@buaa.edu.cn

  • 中图分类号: TD422;TP391.9

Human-machine collaborative control of forward shovel hydraulic mining excavators

Funds: NSFC-Shanxi Coal-based Low Carbon Joint Fund (U1910211)
More Information
  • 摘要:

    针对矿用正铲液压挖掘机操纵复杂度高的问题,提出了一种通用型人机协同控制方法。对比分析了3种能够降低正铲液压挖掘机操纵复杂度的新型工作装置在动臂提升和水平推压作业模式下的作业性能,结果表明,工作装置创新设计存在机构复杂和作业精度低的问题。基于运动学逆解和切换控制思想,所提方法采用驾驶员手动操纵主要执行机构,其他辅助执行机构根据作业要求约束进行自主协同的策略,在保证作业精度的同时,减小了驾驶员操纵难度。结果表明,所提方法能够降低正铲液压挖掘机在动臂提升和水平推压作业模式下的操纵复杂度,提高作业精度和效率,具有模式切换灵活、通用性强等优点。

     

  • 图 1  强力摇臂工作装置示意图

    Figure 1.  Schematic diagram of rocker arm working device

    图 2  铲斗姿态角随动臂提升变化

    Figure 2.  Variation of bucket attitude angles with boom lifting

    图 3  铲斗姿态角随斗杆水平推压变化

    Figure 3.  Variation of bucket attitude angles with stick horizontal crowding

    图 4  人机协同控制架构

    Figure 4.  Architecture of human-machine collaborative control

    图 5  人机协同控制流程

    Figure 5.  Flowchart of human-machine collaborative control

    图 6  挖掘过程中液压缸位移

    Figure 6.  Displacement of hydraulic cylinder during excavation

    图 7  挖掘过程中铲斗姿态角

    Figure 7.  Bucket attitude angle during excavation

    图 8  动臂提升阶段作业性能对比

    Figure 8.  Comparison of operation performance during boom lifting

    图 9  水平推压过程中液压缸位移

    Figure 9.  Displacement of hydraulic cylinder during horizontal crowding

    图 10  水平推压过程中齿尖轨迹

    Figure 10.  Track of tooth tip during horizontal crowding

    图 11  水平推压过程中铲斗姿态角

    Figure 11.  Bucket attitude angle during horizontal crowding

    图 12  水平推压阶段作业性能对比

    Figure 12.  Comparison of operation performance during horizontal crowding

    表  1  特殊工况下工作装置作业性能对比

    Table  1.   Comparison of operation performances of working devices under special working conditions (°)

    作业模式 专用正铲姿态角 强力三角姿态角 强力摇臂姿态角
    区间 标准差 区间 标准差 区间 标准差
    动臂提升 挖掘半径16 m [39.1,82.9] 12.86 [56.1,64.0] 2.45 [53.8,64.0] 3.17
    挖掘半径17 m [45.1,88.9] 12.86 [58.3,69.5] 2.90 [62.4,69.5] 2.18
    水平推压 作业高度0 m [$ - $2.4,3.6] 1.81 [$ - $0.4,6.0] 1.94 [$ - $0.4,6.0] 1.95
    作业高度1 m [$ - $3.7,3.9] 2.36 [$ - $3.3,4.6] 2.21 [$ - $3.3,4.6] 2.21
    下载: 导出CSV

    表  2  各子系统控制参数

    Table  2.   Control parameters of each subsystem

    子系统 kp ki kd
    动臂 4 0.5 0.2
    斗杆 4 0.5 0.2
    铲斗 4 1 0.2
    下载: 导出CSV
  • [1] HALL A S, MCAREE P R. Robust bucket position tracking for a large hydraulic excavator[J]. Mechanism and Machine Theory, 2005, 40(1): 1-16. doi: 10.1016/j.mechmachtheory.2004.05.005
    [2] MITREV R, GRUYCHEV R, POBEGAILO P. CAD/CAE investigation of a large hydraulic mining excavator[J]. Machine Design, 2011, 3(1): 17-22.
    [3] VLADEANU A, VLADEANU G. The possibilities of the horizontal trajectory realization of the bucket teeth at tri-power excavators[C]//SISOM 2012 and Session of the Commission of Acoustics. Bucharest: SISOM press, 2012: 232-239.
    [4] 朱丹丹, 曹宇. 强力三角结构液压正铲挖掘机的力学分析[J]. 煤矿机械, 2015, 36(11): 126-127.

    ZHU D D, CAO Y. Kinematics analysis of triangle structure face-shovel[J]. Coal Mine Machinery, 2015, 36(11): 126-127 (in Chinese).
    [5] 丁华锋, 曹宇, 杨真真, 等. 基于D-H法的多连杆正铲挖掘机运动学分析与包络图绘制[J]. 燕山大学学报, 2014, 38(3): 197-203. doi: 10.3969/j.issn.1007-791X.2014.03.002

    DING H F, CAO Y, YANG Z Z, et al. Position kinematics analysis of multi-linkage face-shovel excavator and envelope plotting using D-H method[J]. Journal of Yanshan University, 2014, 38(3): 197-203(in Chinese). doi: 10.3969/j.issn.1007-791X.2014.03.002
    [6] LI Y H, MU X Y, FAN R J. Multi-objective optimization and simulation of novel working mechanism for face-shovel excavator[J]. International Journal of Intelligent Robotics and Applications, 2021, 5(1): 1-9. doi: 10.1007/s41315-020-00160-1
    [7] FAN R J, LI Y H. An adaptive fuzzy trajectory tracking control via improved cerebellar model articulation controller for electro-hydraulic shovel[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 2870-2880. doi: 10.1109/TMECH.2021.3094284
    [8] QIN T, LI Y H, QUAN L, et al. An adaptive robust impedance control considering energy-saving of hydraulic excavator boom and stick systems[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(4): 1928-1936. doi: 10.1109/TMECH.2022.3173991
    [9] SHI J P, QUAN L, ZHANG X G, et al. Electro-hydraulic velocity and position control based on independent metering valve control in mobile construction equipment[J]. Automation in Construction, 2018, 94: 73-84. doi: 10.1016/j.autcon.2018.06.005
    [10] BAO R K, WANG Q F, WANG T. Energy-saving trajectory tracking control of a multi-pump multi-actuator hydraulic system[J]. IEEE Access, 2020, 8: 179156-179166. doi: 10.1109/ACCESS.2020.3027354
    [11] LI Y, WANG Q F. Adaptive neural finite-time trajectory tracking control of hydraulic excavators[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2018, 232(7): 909-925.
    [12] 李勇. 自动作业液压挖掘机的铲斗轨迹控制和回转力矩控制研究[D]. 杭州: 浙江大学, 2019: 79-85.

    LI Y. Study on bucket traiectorv and swing torque control for the autonomous hydraulic excavator[D]. Hangzhou: Zhejiang University, 2019: 79-85(in Chinese).
    [13] KIM S, PARK J, KANG S, et al. A robust control approach for hydraulic excavators using μ-synthesis[J]. International Journal of Control, Automation and Systems, 2018, 16(4): 1615-1628. doi: 10.1007/s12555-017-0071-9
    [14] LEE C S, BAE J, HONG D. Contour control for leveling work with robotic excavator[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(12): 2055-2060. doi: 10.1007/s12541-013-0278-5
    [15] WANG D Y, ZHENG L J, YU H X, et al. Robotic excavator motion control using a nonlinear proportional-integral controller and cross-coupled pre-compensation[J]. Automation in Construction, 2016, 64: 1-6. doi: 10.1016/j.autcon.2015.12.024
    [16] ARAYA H, KAGOSHIMA M. Semi-automatic control system for hydraulic shovel[J]. Automation in Construction, 2001, 10(4): 477-486. doi: 10.1016/S0926-5805(00)00083-2
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  83
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-11-03
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答